Matches in SemOpenAlex for { <https://semopenalex.org/work/W3000870854> ?p ?o ?g. }
- W3000870854 endingPage "5191" @default.
- W3000870854 startingPage "5178" @default.
- W3000870854 abstract "In this article, we propose a novel entropy and confidence-based undersampling boosting (ECUBoost) framework to solve imbalanced problems. The boosting-based ensemble is combined with a new undersampling method to improve the generalization performance. To avoid losing informative samples during the data preprocessing of the boosting-based ensemble, both confidence and entropy are used in ECUBoost as benchmarks to ensure the validity and structural distribution of the majority samples during the undersampling. Furthermore, different from other iterative dynamic resampling methods, ECUBoost based on confidence can be applied to algorithms without iterations such as decision trees. Meanwhile, random forests are used as base classifiers in ECUBoost. Furthermore, experimental results on both artificial data sets and KEEL data sets prove the effectiveness of the proposed method." @default.
- W3000870854 created "2020-01-30" @default.
- W3000870854 creator A5028833097 @default.
- W3000870854 creator A5055768001 @default.
- W3000870854 creator A5075476739 @default.
- W3000870854 date "2020-12-01" @default.
- W3000870854 modified "2023-10-17" @default.
- W3000870854 title "Entropy and Confidence-Based Undersampling Boosting Random Forests for Imbalanced Problems" @default.
- W3000870854 cites W1485718738 @default.
- W3000870854 cites W1563938718 @default.
- W3000870854 cites W1566180882 @default.
- W3000870854 cites W1591261915 @default.
- W3000870854 cites W1976035027 @default.
- W3000870854 cites W1988790447 @default.
- W3000870854 cites W1995875735 @default.
- W3000870854 cites W1999501864 @default.
- W3000870854 cites W2019858993 @default.
- W3000870854 cites W2023639956 @default.
- W3000870854 cites W2040181375 @default.
- W3000870854 cites W2041162724 @default.
- W3000870854 cites W2053724458 @default.
- W3000870854 cites W2057589484 @default.
- W3000870854 cites W2065157688 @default.
- W3000870854 cites W2083551746 @default.
- W3000870854 cites W2096451472 @default.
- W3000870854 cites W2096945460 @default.
- W3000870854 cites W2099454382 @default.
- W3000870854 cites W2100208452 @default.
- W3000870854 cites W2103414007 @default.
- W3000870854 cites W2104167780 @default.
- W3000870854 cites W2104242071 @default.
- W3000870854 cites W2106479238 @default.
- W3000870854 cites W2110298216 @default.
- W3000870854 cites W2118978333 @default.
- W3000870854 cites W2119168155 @default.
- W3000870854 cites W2119498311 @default.
- W3000870854 cites W2132791018 @default.
- W3000870854 cites W2133506114 @default.
- W3000870854 cites W2136256517 @default.
- W3000870854 cites W2148143831 @default.
- W3000870854 cites W2160955696 @default.
- W3000870854 cites W2336068717 @default.
- W3000870854 cites W2396908641 @default.
- W3000870854 cites W2414765418 @default.
- W3000870854 cites W2534830764 @default.
- W3000870854 cites W2539190955 @default.
- W3000870854 cites W2540642777 @default.
- W3000870854 cites W2582043155 @default.
- W3000870854 cites W2615668591 @default.
- W3000870854 cites W2764270061 @default.
- W3000870854 cites W2911964244 @default.
- W3000870854 cites W2949320428 @default.
- W3000870854 cites W3102476541 @default.
- W3000870854 cites W4212883601 @default.
- W3000870854 cites W4232478844 @default.
- W3000870854 cites W4236137412 @default.
- W3000870854 cites W4247663525 @default.
- W3000870854 doi "https://doi.org/10.1109/tnnls.2020.2964585" @default.
- W3000870854 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/31995503" @default.
- W3000870854 hasPublicationYear "2020" @default.
- W3000870854 type Work @default.
- W3000870854 sameAs 3000870854 @default.
- W3000870854 citedByCount "49" @default.
- W3000870854 countsByYear W30008708542020 @default.
- W3000870854 countsByYear W30008708542021 @default.
- W3000870854 countsByYear W30008708542022 @default.
- W3000870854 countsByYear W30008708542023 @default.
- W3000870854 crossrefType "journal-article" @default.
- W3000870854 hasAuthorship W3000870854A5028833097 @default.
- W3000870854 hasAuthorship W3000870854A5055768001 @default.
- W3000870854 hasAuthorship W3000870854A5075476739 @default.
- W3000870854 hasConcept C106301342 @default.
- W3000870854 hasConcept C119857082 @default.
- W3000870854 hasConcept C121332964 @default.
- W3000870854 hasConcept C124101348 @default.
- W3000870854 hasConcept C136536468 @default.
- W3000870854 hasConcept C150921843 @default.
- W3000870854 hasConcept C153180895 @default.
- W3000870854 hasConcept C154945302 @default.
- W3000870854 hasConcept C169258074 @default.
- W3000870854 hasConcept C33923547 @default.
- W3000870854 hasConcept C41008148 @default.
- W3000870854 hasConcept C46686674 @default.
- W3000870854 hasConcept C62520636 @default.
- W3000870854 hasConceptScore W3000870854C106301342 @default.
- W3000870854 hasConceptScore W3000870854C119857082 @default.
- W3000870854 hasConceptScore W3000870854C121332964 @default.
- W3000870854 hasConceptScore W3000870854C124101348 @default.
- W3000870854 hasConceptScore W3000870854C136536468 @default.
- W3000870854 hasConceptScore W3000870854C150921843 @default.
- W3000870854 hasConceptScore W3000870854C153180895 @default.
- W3000870854 hasConceptScore W3000870854C154945302 @default.
- W3000870854 hasConceptScore W3000870854C169258074 @default.
- W3000870854 hasConceptScore W3000870854C33923547 @default.
- W3000870854 hasConceptScore W3000870854C41008148 @default.
- W3000870854 hasConceptScore W3000870854C46686674 @default.
- W3000870854 hasConceptScore W3000870854C62520636 @default.
- W3000870854 hasFunder F4320321001 @default.