Matches in SemOpenAlex for { <https://semopenalex.org/work/W3000884041> ?p ?o ?g. }
- W3000884041 endingPage "19207" @default.
- W3000884041 startingPage "19196" @default.
- W3000884041 abstract "In skeleton-based abnormal gait recognition, using original skeleton data decreases the recognition performance because they contain noise and irrelevant information. Instead of feeding original skeletal gait data to a recognition model, features extracted from the skeleton data are normally used. However, existing feature extraction methods might include laborious processes and it is hard for them to minimize the irrelevant information while preserving the important information. To solve this problem, an automatic feature extraction method using a recurrent neural network (RNN)-based Autoencoder (AE) is proposed in this paper. We extracted features from skeletal gait data by using two RNN AEs: a long short-term memory (LSTM)-based AE (LSTM AE) and a gated recurrent unit (GRU)-based AE (GRU AE). The features of the RNN AEs are compared to the original skeleton data and other existing features. We evaluated the features by feeding them to various discriminative models (DMs) and comparing the recognition performances. The features extracted by using the RNN AEs are more easily recognized and robust than the original skeleton data and other existing features. In particular, the LSTM AE shows a better performance than the GRU AE. Compared to single DMs fed with the original skeleton directly, hybrid models where the features of the RNN AEs are fed to DMs show a higher recognition accuracy with fewer training epochs and learning parameters. Therefore, the proposed automatic feature extraction method improves the performance of skeleton-based abnormal gait recognition by reducing laborious processes and increasing the recognition accuracy effectively." @default.
- W3000884041 created "2020-01-30" @default.
- W3000884041 creator A5031483606 @default.
- W3000884041 creator A5059663795 @default.
- W3000884041 creator A5084294297 @default.
- W3000884041 creator A5088028367 @default.
- W3000884041 creator A5091001806 @default.
- W3000884041 date "2020-01-01" @default.
- W3000884041 modified "2023-10-06" @default.
- W3000884041 title "Feature Extraction Using an RNN Autoencoder for Skeleton-Based Abnormal Gait Recognition" @default.
- W3000884041 cites W1536165553 @default.
- W3000884041 cites W1601124178 @default.
- W3000884041 cites W1801171261 @default.
- W3000884041 cites W1875013029 @default.
- W3000884041 cites W1902237438 @default.
- W3000884041 cites W1923404803 @default.
- W3000884041 cites W1968630667 @default.
- W3000884041 cites W1970928138 @default.
- W3000884041 cites W2005708641 @default.
- W3000884041 cites W2019720861 @default.
- W3000884041 cites W2025255899 @default.
- W3000884041 cites W2064675550 @default.
- W3000884041 cites W2069143585 @default.
- W3000884041 cites W2079019539 @default.
- W3000884041 cites W2100495367 @default.
- W3000884041 cites W2102425529 @default.
- W3000884041 cites W2115613106 @default.
- W3000884041 cites W2143612262 @default.
- W3000884041 cites W2182983406 @default.
- W3000884041 cites W2342993369 @default.
- W3000884041 cites W2518815253 @default.
- W3000884041 cites W2545698454 @default.
- W3000884041 cites W2550669594 @default.
- W3000884041 cites W2565575913 @default.
- W3000884041 cites W2801396593 @default.
- W3000884041 cites W2887828378 @default.
- W3000884041 cites W2890429072 @default.
- W3000884041 cites W2902756466 @default.
- W3000884041 cites W2909657469 @default.
- W3000884041 cites W2962717182 @default.
- W3000884041 cites W2963608065 @default.
- W3000884041 cites W2964199361 @default.
- W3000884041 cites W2973077827 @default.
- W3000884041 cites W3098471069 @default.
- W3000884041 cites W3100485717 @default.
- W3000884041 cites W3123784868 @default.
- W3000884041 cites W747418368 @default.
- W3000884041 cites W976039271 @default.
- W3000884041 doi "https://doi.org/10.1109/access.2020.2967845" @default.
- W3000884041 hasPublicationYear "2020" @default.
- W3000884041 type Work @default.
- W3000884041 sameAs 3000884041 @default.
- W3000884041 citedByCount "61" @default.
- W3000884041 countsByYear W30008840412020 @default.
- W3000884041 countsByYear W30008840412021 @default.
- W3000884041 countsByYear W30008840412022 @default.
- W3000884041 countsByYear W30008840412023 @default.
- W3000884041 crossrefType "journal-article" @default.
- W3000884041 hasAuthorship W3000884041A5031483606 @default.
- W3000884041 hasAuthorship W3000884041A5059663795 @default.
- W3000884041 hasAuthorship W3000884041A5084294297 @default.
- W3000884041 hasAuthorship W3000884041A5088028367 @default.
- W3000884041 hasAuthorship W3000884041A5091001806 @default.
- W3000884041 hasBestOaLocation W30008840411 @default.
- W3000884041 hasConcept C101738243 @default.
- W3000884041 hasConcept C108583219 @default.
- W3000884041 hasConcept C138885662 @default.
- W3000884041 hasConcept C147168706 @default.
- W3000884041 hasConcept C151800584 @default.
- W3000884041 hasConcept C153180895 @default.
- W3000884041 hasConcept C154945302 @default.
- W3000884041 hasConcept C18969341 @default.
- W3000884041 hasConcept C199360897 @default.
- W3000884041 hasConcept C2776401178 @default.
- W3000884041 hasConcept C28490314 @default.
- W3000884041 hasConcept C41008148 @default.
- W3000884041 hasConcept C41895202 @default.
- W3000884041 hasConcept C42407357 @default.
- W3000884041 hasConcept C50644808 @default.
- W3000884041 hasConcept C52622490 @default.
- W3000884041 hasConcept C86803240 @default.
- W3000884041 hasConcept C97931131 @default.
- W3000884041 hasConceptScore W3000884041C101738243 @default.
- W3000884041 hasConceptScore W3000884041C108583219 @default.
- W3000884041 hasConceptScore W3000884041C138885662 @default.
- W3000884041 hasConceptScore W3000884041C147168706 @default.
- W3000884041 hasConceptScore W3000884041C151800584 @default.
- W3000884041 hasConceptScore W3000884041C153180895 @default.
- W3000884041 hasConceptScore W3000884041C154945302 @default.
- W3000884041 hasConceptScore W3000884041C18969341 @default.
- W3000884041 hasConceptScore W3000884041C199360897 @default.
- W3000884041 hasConceptScore W3000884041C2776401178 @default.
- W3000884041 hasConceptScore W3000884041C28490314 @default.
- W3000884041 hasConceptScore W3000884041C41008148 @default.
- W3000884041 hasConceptScore W3000884041C41895202 @default.
- W3000884041 hasConceptScore W3000884041C42407357 @default.
- W3000884041 hasConceptScore W3000884041C50644808 @default.
- W3000884041 hasConceptScore W3000884041C52622490 @default.