Matches in SemOpenAlex for { <https://semopenalex.org/work/W3000928540> ?p ?o ?g. }
- W3000928540 endingPage "345" @default.
- W3000928540 startingPage "336" @default.
- W3000928540 abstract "Combustion processes with pure oxygen (oxy-fuel) instead of air as oxidant are attractive for high temperature thermal or thermochemical and gasification processes. The absence of nitrogen in such applications leads to higher temperature and species concentrations, which can stabilize even extremely rich flames. Despite their benefits, there is lack of knowledge concerning the internal structure of rich oxy-fuel flames, which feature reactions with largely diverging chemical time scales, namely, the fast oxidation reactions and the slow endothermic formation of synthesis gas. In order to get a better insight, the scope of this study was to determine axial H2O- and temperature profiles of flat, fuel-rich methane-oxygen flames with equivalence ratios from 2.5 ≤ ϕ ≤ 2.9. A Heat-Flux-burner was used to stabilize quasi-adiabatic one-dimensional flames. The inlet temperature of the gas mixture was kept constant at TP = 300 K and the inlet velocity equal to the laminar burning velocity, which was determined in a preceding experimental study. The in-situ temperature and H2O-concentration measurements were performed using Tunable Diode Laser Absorption Spectroscopy (TDLAS). Laser measurements were carried out with three different diode lasers at center wavelengths λcw = 1344.5 nm, 1392.3 nm and 1853.5 nm, respectively, where multiple absorption peaks of the water molecule were investigated. Additionally, one-dimensional calculations with detailed chemistry were performed using the PREMIX code together with the GRI3.0 and CalTec2.3 mechanisms and compared with the experimental data. The results of the temperature measurements showed temperature peaks in the flame zone and a temperature decrease in the endothermic post flame zone, where synthesis gas is formed. The measured peak temperatures exceed the calculated equilibrium temperatures by approximately 100–400 K indicating super-adiabatic flame temperatures (SAFT). Both reaction mechanisms showed similar trends with respect to the decrease of the temperature in the post flame zone and were in line with the measured temperature. In contrast, the calculated decomposition of water in the post flame zone highly depends on the applied chemistry scheme. Here, the CalTech2.3 mechanism showed excellent performance in comparison to the experimental data for ϕ > 2.5. For ϕ = 2.5 the GRI3.0 performed better." @default.
- W3000928540 created "2020-01-30" @default.
- W3000928540 creator A5003642624 @default.
- W3000928540 creator A5008979535 @default.
- W3000928540 creator A5026597168 @default.
- W3000928540 creator A5038614797 @default.
- W3000928540 creator A5056955101 @default.
- W3000928540 creator A5075288458 @default.
- W3000928540 date "2020-04-01" @default.
- W3000928540 modified "2023-09-26" @default.
- W3000928540 title "Determination of temperature and water-concentration in fuel-rich oxy-fuel methane flames applying TDLAS" @default.
- W3000928540 cites W1776209211 @default.
- W3000928540 cites W1965034995 @default.
- W3000928540 cites W1966816447 @default.
- W3000928540 cites W1993316886 @default.
- W3000928540 cites W1998158921 @default.
- W3000928540 cites W2011828570 @default.
- W3000928540 cites W2023646136 @default.
- W3000928540 cites W2026139312 @default.
- W3000928540 cites W2028603517 @default.
- W3000928540 cites W2034804042 @default.
- W3000928540 cites W2041466137 @default.
- W3000928540 cites W2041660875 @default.
- W3000928540 cites W2046508645 @default.
- W3000928540 cites W2048252208 @default.
- W3000928540 cites W2054479251 @default.
- W3000928540 cites W2057634105 @default.
- W3000928540 cites W2065939966 @default.
- W3000928540 cites W2070162488 @default.
- W3000928540 cites W2071334158 @default.
- W3000928540 cites W2089238781 @default.
- W3000928540 cites W2093384665 @default.
- W3000928540 cites W2099392466 @default.
- W3000928540 cites W2105919463 @default.
- W3000928540 cites W2123132721 @default.
- W3000928540 cites W2126858388 @default.
- W3000928540 cites W2160323834 @default.
- W3000928540 cites W2164399811 @default.
- W3000928540 cites W2166670445 @default.
- W3000928540 cites W2292534239 @default.
- W3000928540 cites W2507841392 @default.
- W3000928540 cites W2575453628 @default.
- W3000928540 cites W2591682036 @default.
- W3000928540 cites W2753964119 @default.
- W3000928540 cites W4206050372 @default.
- W3000928540 doi "https://doi.org/10.1016/j.combustflame.2020.01.003" @default.
- W3000928540 hasPublicationYear "2020" @default.
- W3000928540 type Work @default.
- W3000928540 sameAs 3000928540 @default.
- W3000928540 citedByCount "21" @default.
- W3000928540 countsByYear W30009285402021 @default.
- W3000928540 countsByYear W30009285402022 @default.
- W3000928540 countsByYear W30009285402023 @default.
- W3000928540 crossrefType "journal-article" @default.
- W3000928540 hasAuthorship W3000928540A5003642624 @default.
- W3000928540 hasAuthorship W3000928540A5008979535 @default.
- W3000928540 hasAuthorship W3000928540A5026597168 @default.
- W3000928540 hasAuthorship W3000928540A5038614797 @default.
- W3000928540 hasAuthorship W3000928540A5056955101 @default.
- W3000928540 hasAuthorship W3000928540A5075288458 @default.
- W3000928540 hasBestOaLocation W30009285402 @default.
- W3000928540 hasConcept C103324678 @default.
- W3000928540 hasConcept C105923489 @default.
- W3000928540 hasConcept C113196181 @default.
- W3000928540 hasConcept C120665830 @default.
- W3000928540 hasConcept C121332964 @default.
- W3000928540 hasConcept C150394285 @default.
- W3000928540 hasConcept C178790620 @default.
- W3000928540 hasConcept C185592680 @default.
- W3000928540 hasConcept C197554733 @default.
- W3000928540 hasConcept C20976626 @default.
- W3000928540 hasConcept C2776345496 @default.
- W3000928540 hasConcept C2778269189 @default.
- W3000928540 hasConcept C516920438 @default.
- W3000928540 hasConcept C520434653 @default.
- W3000928540 hasConcept C83104080 @default.
- W3000928540 hasConcept C97749803 @default.
- W3000928540 hasConceptScore W3000928540C103324678 @default.
- W3000928540 hasConceptScore W3000928540C105923489 @default.
- W3000928540 hasConceptScore W3000928540C113196181 @default.
- W3000928540 hasConceptScore W3000928540C120665830 @default.
- W3000928540 hasConceptScore W3000928540C121332964 @default.
- W3000928540 hasConceptScore W3000928540C150394285 @default.
- W3000928540 hasConceptScore W3000928540C178790620 @default.
- W3000928540 hasConceptScore W3000928540C185592680 @default.
- W3000928540 hasConceptScore W3000928540C197554733 @default.
- W3000928540 hasConceptScore W3000928540C20976626 @default.
- W3000928540 hasConceptScore W3000928540C2776345496 @default.
- W3000928540 hasConceptScore W3000928540C2778269189 @default.
- W3000928540 hasConceptScore W3000928540C516920438 @default.
- W3000928540 hasConceptScore W3000928540C520434653 @default.
- W3000928540 hasConceptScore W3000928540C83104080 @default.
- W3000928540 hasConceptScore W3000928540C97749803 @default.
- W3000928540 hasLocation W30009285401 @default.
- W3000928540 hasLocation W30009285402 @default.
- W3000928540 hasOpenAccess W3000928540 @default.
- W3000928540 hasPrimaryLocation W30009285401 @default.
- W3000928540 hasRelatedWork W1965477270 @default.