Matches in SemOpenAlex for { <https://semopenalex.org/work/W3000984054> ?p ?o ?g. }
- W3000984054 endingPage "1210" @default.
- W3000984054 startingPage "1193" @default.
- W3000984054 abstract "In this paper we include dependency structures for electricity price forecasting and forecasting evaluation. We work with off-peak and peak time series from the German-Austrian day-ahead price, hence we analyze bivariate data. We first estimate the mean of the two time series, and then in a second step we estimate the residuals. The mean equation is estimated by OLS and elastic net and the residuals are estimated by maximum likelihood. Our contribution is to include a bivariate jump component on a mean reverting jump diffusion model in the residuals. The models' forecasts are evaluated using four different criteria, including the energy score to measure whether the correlation structure between the time series is properly included or not. In the results it is observed that the models with bivariate jumps provide better results with the energy score, which means that it is important to consider this structure in order to properly forecast correlated time series." @default.
- W3000984054 created "2020-01-30" @default.
- W3000984054 creator A5030335412 @default.
- W3000984054 creator A5032132614 @default.
- W3000984054 date "2020-10-01" @default.
- W3000984054 modified "2023-10-14" @default.
- W3000984054 title "Probabilistic forecasting in day-ahead electricity markets: Simulating peak and off-peak prices" @default.
- W3000984054 cites W1971347771 @default.
- W3000984054 cites W1976734415 @default.
- W3000984054 cites W1996386137 @default.
- W3000984054 cites W2000162856 @default.
- W3000984054 cites W2007694684 @default.
- W3000984054 cites W2014828134 @default.
- W3000984054 cites W2017957151 @default.
- W3000984054 cites W2025720061 @default.
- W3000984054 cites W2032938012 @default.
- W3000984054 cites W2034269318 @default.
- W3000984054 cites W2047219467 @default.
- W3000984054 cites W2063593194 @default.
- W3000984054 cites W2066021720 @default.
- W3000984054 cites W2089217930 @default.
- W3000984054 cites W2122825543 @default.
- W3000984054 cites W2135046866 @default.
- W3000984054 cites W2148402438 @default.
- W3000984054 cites W2158111154 @default.
- W3000984054 cites W2229320441 @default.
- W3000984054 cites W2272544568 @default.
- W3000984054 cites W2286305802 @default.
- W3000984054 cites W2297295746 @default.
- W3000984054 cites W2344428291 @default.
- W3000984054 cites W2481907963 @default.
- W3000984054 cites W2791331167 @default.
- W3000984054 cites W3106158933 @default.
- W3000984054 cites W3122251954 @default.
- W3000984054 cites W3122855307 @default.
- W3000984054 cites W3124605301 @default.
- W3000984054 cites W4234698323 @default.
- W3000984054 cites W4292671038 @default.
- W3000984054 doi "https://doi.org/10.1016/j.ijforecast.2019.11.006" @default.
- W3000984054 hasPublicationYear "2020" @default.
- W3000984054 type Work @default.
- W3000984054 sameAs 3000984054 @default.
- W3000984054 citedByCount "19" @default.
- W3000984054 countsByYear W30009840542020 @default.
- W3000984054 countsByYear W30009840542021 @default.
- W3000984054 countsByYear W30009840542022 @default.
- W3000984054 countsByYear W30009840542023 @default.
- W3000984054 crossrefType "journal-article" @default.
- W3000984054 hasAuthorship W3000984054A5030335412 @default.
- W3000984054 hasAuthorship W3000984054A5032132614 @default.
- W3000984054 hasBestOaLocation W30009840542 @default.
- W3000984054 hasConcept C105795698 @default.
- W3000984054 hasConcept C119599485 @default.
- W3000984054 hasConcept C121332964 @default.
- W3000984054 hasConcept C122282355 @default.
- W3000984054 hasConcept C127413603 @default.
- W3000984054 hasConcept C135205223 @default.
- W3000984054 hasConcept C143724316 @default.
- W3000984054 hasConcept C146733006 @default.
- W3000984054 hasConcept C149782125 @default.
- W3000984054 hasConcept C151730666 @default.
- W3000984054 hasConcept C162324750 @default.
- W3000984054 hasConcept C206658404 @default.
- W3000984054 hasConcept C2779664328 @default.
- W3000984054 hasConcept C2780695682 @default.
- W3000984054 hasConcept C2781104810 @default.
- W3000984054 hasConcept C33923547 @default.
- W3000984054 hasConcept C49937458 @default.
- W3000984054 hasConcept C62520636 @default.
- W3000984054 hasConcept C64341305 @default.
- W3000984054 hasConcept C86803240 @default.
- W3000984054 hasConceptScore W3000984054C105795698 @default.
- W3000984054 hasConceptScore W3000984054C119599485 @default.
- W3000984054 hasConceptScore W3000984054C121332964 @default.
- W3000984054 hasConceptScore W3000984054C122282355 @default.
- W3000984054 hasConceptScore W3000984054C127413603 @default.
- W3000984054 hasConceptScore W3000984054C135205223 @default.
- W3000984054 hasConceptScore W3000984054C143724316 @default.
- W3000984054 hasConceptScore W3000984054C146733006 @default.
- W3000984054 hasConceptScore W3000984054C149782125 @default.
- W3000984054 hasConceptScore W3000984054C151730666 @default.
- W3000984054 hasConceptScore W3000984054C162324750 @default.
- W3000984054 hasConceptScore W3000984054C206658404 @default.
- W3000984054 hasConceptScore W3000984054C2779664328 @default.
- W3000984054 hasConceptScore W3000984054C2780695682 @default.
- W3000984054 hasConceptScore W3000984054C2781104810 @default.
- W3000984054 hasConceptScore W3000984054C33923547 @default.
- W3000984054 hasConceptScore W3000984054C49937458 @default.
- W3000984054 hasConceptScore W3000984054C62520636 @default.
- W3000984054 hasConceptScore W3000984054C64341305 @default.
- W3000984054 hasConceptScore W3000984054C86803240 @default.
- W3000984054 hasIssue "4" @default.
- W3000984054 hasLocation W30009840541 @default.
- W3000984054 hasLocation W30009840542 @default.
- W3000984054 hasLocation W30009840543 @default.
- W3000984054 hasOpenAccess W3000984054 @default.
- W3000984054 hasPrimaryLocation W30009840541 @default.
- W3000984054 hasRelatedWork W2067126025 @default.