Matches in SemOpenAlex for { <https://semopenalex.org/work/W3000992249> ?p ?o ?g. }
- W3000992249 endingPage "777" @default.
- W3000992249 startingPage "777" @default.
- W3000992249 abstract "Bridge displacements are one of the most important physical values in evaluating the health of bridges. However, the direct measurement of bridge displacements is not easy due to various factors, such as installation location and cost. For that reason, in a previous study (part 1), a method for predicting bridge displacements from strains was proposed using an artificial neural network (ANN), which has a strong ability in data mapping. In this paper, to predict the overall displacements from a small number of strains more efficiently, a method to optimize the number and locations of strain-measurement points was proposed using the genetic algorithm (GA), which is widely used for global optimization. To verify the proposed methods, two cases, a simple beam under sinusoidal loads and a girder bridge under vehicle loads, are carried out through numerical analysis. Also, a laboratory experiment is carried out with a vibrating cantilever beam. The results indicate that the predicted displacements from at least two strains at the optimized locations show good agreements with displacements by numerical analysis and measurements. The results suggest that the proposed method (optimization of strain-measurement points) is very efficient and can be applied in the actual field." @default.
- W3000992249 created "2020-01-30" @default.
- W3000992249 creator A5021216065 @default.
- W3000992249 creator A5046118583 @default.
- W3000992249 creator A5058169756 @default.
- W3000992249 creator A5067730635 @default.
- W3000992249 date "2020-01-22" @default.
- W3000992249 modified "2023-10-14" @default.
- W3000992249 title "Artificial Neural Network for Vertical Displacement Prediction of a Bridge from Strains (Part 2): Optimization of Strain-Measurement Points by a Genetic Algorithm under Dynamic Loading" @default.
- W3000992249 cites W112681900 @default.
- W3000992249 cites W1155676390 @default.
- W3000992249 cites W1517623310 @default.
- W3000992249 cites W1567882266 @default.
- W3000992249 cites W1586335931 @default.
- W3000992249 cites W1966074782 @default.
- W3000992249 cites W1969090128 @default.
- W3000992249 cites W1973517168 @default.
- W3000992249 cites W1974136982 @default.
- W3000992249 cites W1978970113 @default.
- W3000992249 cites W1980177636 @default.
- W3000992249 cites W1987030036 @default.
- W3000992249 cites W1987748520 @default.
- W3000992249 cites W1995341919 @default.
- W3000992249 cites W2004338573 @default.
- W3000992249 cites W2016467472 @default.
- W3000992249 cites W2033151804 @default.
- W3000992249 cites W2038193064 @default.
- W3000992249 cites W2039938372 @default.
- W3000992249 cites W2046787526 @default.
- W3000992249 cites W2056357968 @default.
- W3000992249 cites W2057037490 @default.
- W3000992249 cites W2061015086 @default.
- W3000992249 cites W2064514630 @default.
- W3000992249 cites W2068046269 @default.
- W3000992249 cites W2073515924 @default.
- W3000992249 cites W2079375088 @default.
- W3000992249 cites W2082043879 @default.
- W3000992249 cites W2082359052 @default.
- W3000992249 cites W2086282769 @default.
- W3000992249 cites W2088441543 @default.
- W3000992249 cites W2089241006 @default.
- W3000992249 cites W2091881089 @default.
- W3000992249 cites W2092709759 @default.
- W3000992249 cites W2094403216 @default.
- W3000992249 cites W2094512035 @default.
- W3000992249 cites W2103151075 @default.
- W3000992249 cites W2107356856 @default.
- W3000992249 cites W2108835525 @default.
- W3000992249 cites W2111574906 @default.
- W3000992249 cites W2122145224 @default.
- W3000992249 cites W2124159630 @default.
- W3000992249 cites W2131078548 @default.
- W3000992249 cites W2155790412 @default.
- W3000992249 cites W2171784600 @default.
- W3000992249 cites W2318710304 @default.
- W3000992249 cites W2401012801 @default.
- W3000992249 cites W2466125528 @default.
- W3000992249 cites W2555697849 @default.
- W3000992249 cites W2590762173 @default.
- W3000992249 cites W2894251811 @default.
- W3000992249 cites W2963512079 @default.
- W3000992249 cites W3100188963 @default.
- W3000992249 doi "https://doi.org/10.3390/app10030777" @default.
- W3000992249 hasPublicationYear "2020" @default.
- W3000992249 type Work @default.
- W3000992249 sameAs 3000992249 @default.
- W3000992249 citedByCount "9" @default.
- W3000992249 countsByYear W30009922492020 @default.
- W3000992249 countsByYear W30009922492021 @default.
- W3000992249 countsByYear W30009922492022 @default.
- W3000992249 countsByYear W30009922492023 @default.
- W3000992249 crossrefType "journal-article" @default.
- W3000992249 hasAuthorship W3000992249A5021216065 @default.
- W3000992249 hasAuthorship W3000992249A5046118583 @default.
- W3000992249 hasAuthorship W3000992249A5058169756 @default.
- W3000992249 hasAuthorship W3000992249A5067730635 @default.
- W3000992249 hasBestOaLocation W30009922491 @default.
- W3000992249 hasConcept C100776233 @default.
- W3000992249 hasConcept C107551265 @default.
- W3000992249 hasConcept C11413529 @default.
- W3000992249 hasConcept C119857082 @default.
- W3000992249 hasConcept C126322002 @default.
- W3000992249 hasConcept C127413603 @default.
- W3000992249 hasConcept C141354745 @default.
- W3000992249 hasConcept C154945302 @default.
- W3000992249 hasConcept C15744967 @default.
- W3000992249 hasConcept C168834538 @default.
- W3000992249 hasConcept C41008148 @default.
- W3000992249 hasConcept C50644808 @default.
- W3000992249 hasConcept C542102704 @default.
- W3000992249 hasConcept C66938386 @default.
- W3000992249 hasConcept C71924100 @default.
- W3000992249 hasConcept C8880873 @default.
- W3000992249 hasConceptScore W3000992249C100776233 @default.
- W3000992249 hasConceptScore W3000992249C107551265 @default.
- W3000992249 hasConceptScore W3000992249C11413529 @default.
- W3000992249 hasConceptScore W3000992249C119857082 @default.
- W3000992249 hasConceptScore W3000992249C126322002 @default.