Matches in SemOpenAlex for { <https://semopenalex.org/work/W3001083904> ?p ?o ?g. }
- W3001083904 endingPage "64" @default.
- W3001083904 startingPage "39" @default.
- W3001083904 abstract "Object detection is a fundamental visual recognition problem in computer vision and has been widely studied in the past decades. Visual object detection aims to find objects of certain target classes with precise localization in a given image and assign each object instance a corresponding class label. Due to the tremendous successes of deep learning based image classification, object detection techniques using deep learning have been actively studied in recent years. In this paper, we give a comprehensive survey of recent advances in visual object detection with deep learning. By reviewing a large body of recent related work in literature, we systematically analyze the existing object detection frameworks and organize the survey into three major parts: (i) detection components, (ii) learning strategies, and (iii) applications & benchmarks. In the survey, we cover a variety of factors affecting the detection performance in detail, such as detector architectures, feature learning, proposal generation, sampling strategies, etc. Finally, we discuss several future directions to facilitate and spur future research for visual object detection with deep learning. Keywords: Object Detection, Deep Learning, Deep Convolutional Neural Networks" @default.
- W3001083904 created "2020-01-30" @default.
- W3001083904 creator A5018199981 @default.
- W3001083904 creator A5053105579 @default.
- W3001083904 creator A5074834854 @default.
- W3001083904 date "2020-07-01" @default.
- W3001083904 modified "2023-10-11" @default.
- W3001083904 title "Recent advances in deep learning for object detection" @default.
- W3001083904 cites W1487583988 @default.
- W3001083904 cites W1522301498 @default.
- W3001083904 cites W1522947131 @default.
- W3001083904 cites W1604882328 @default.
- W3001083904 cites W1665214252 @default.
- W3001083904 cites W1677409904 @default.
- W3001083904 cites W1686810756 @default.
- W3001083904 cites W1724438581 @default.
- W3001083904 cites W1821462560 @default.
- W3001083904 cites W182571476 @default.
- W3001083904 cites W1845051632 @default.
- W3001083904 cites W1861492603 @default.
- W3001083904 cites W1901129140 @default.
- W3001083904 cites W1923697677 @default.
- W3001083904 cites W1925738122 @default.
- W3001083904 cites W1932624639 @default.
- W3001083904 cites W1960289438 @default.
- W3001083904 cites W1964005749 @default.
- W3001083904 cites W1970850659 @default.
- W3001083904 cites W197865394 @default.
- W3001083904 cites W1986905809 @default.
- W3001083904 cites W1994616650 @default.
- W3001083904 cites W1999478155 @default.
- W3001083904 cites W2008056655 @default.
- W3001083904 cites W2016053056 @default.
- W3001083904 cites W2031454541 @default.
- W3001083904 cites W2031489346 @default.
- W3001083904 cites W2035784046 @default.
- W3001083904 cites W2041497292 @default.
- W3001083904 cites W2046382188 @default.
- W3001083904 cites W2066624635 @default.
- W3001083904 cites W2088049833 @default.
- W3001083904 cites W2097117768 @default.
- W3001083904 cites W2098699644 @default.
- W3001083904 cites W2099471712 @default.
- W3001083904 cites W2100805904 @default.
- W3001083904 cites W2102605133 @default.
- W3001083904 cites W2103577800 @default.
- W3001083904 cites W2107634464 @default.
- W3001083904 cites W2108598243 @default.
- W3001083904 cites W2111868822 @default.
- W3001083904 cites W2112076978 @default.
- W3001083904 cites W2112796928 @default.
- W3001083904 cites W2115579991 @default.
- W3001083904 cites W2115763357 @default.
- W3001083904 cites W2119144962 @default.
- W3001083904 cites W2121660792 @default.
- W3001083904 cites W2123099218 @default.
- W3001083904 cites W2124351082 @default.
- W3001083904 cites W2124386111 @default.
- W3001083904 cites W2125556102 @default.
- W3001083904 cites W2140090057 @default.
- W3001083904 cites W2140609507 @default.
- W3001083904 cites W2144172034 @default.
- W3001083904 cites W2145038566 @default.
- W3001083904 cites W2151103935 @default.
- W3001083904 cites W2151454023 @default.
- W3001083904 cites W2152945944 @default.
- W3001083904 cites W2153038208 @default.
- W3001083904 cites W2156547346 @default.
- W3001083904 cites W2159386181 @default.
- W3001083904 cites W2161198271 @default.
- W3001083904 cites W2161969291 @default.
- W3001083904 cites W2162741153 @default.
- W3001083904 cites W2162846286 @default.
- W3001083904 cites W2163352848 @default.
- W3001083904 cites W2163605009 @default.
- W3001083904 cites W2164598857 @default.
- W3001083904 cites W2165688580 @default.
- W3001083904 cites W2167765625 @default.
- W3001083904 cites W2168356304 @default.
- W3001083904 cites W2173520492 @default.
- W3001083904 cites W2177847924 @default.
- W3001083904 cites W2179352600 @default.
- W3001083904 cites W2183341477 @default.
- W3001083904 cites W2194775991 @default.
- W3001083904 cites W2200528286 @default.
- W3001083904 cites W2216125271 @default.
- W3001083904 cites W2233116163 @default.
- W3001083904 cites W2265127172 @default.
- W3001083904 cites W2274287116 @default.
- W3001083904 cites W2282391807 @default.
- W3001083904 cites W2288122362 @default.
- W3001083904 cites W2300805302 @default.
- W3001083904 cites W2302255633 @default.
- W3001083904 cites W2322480645 @default.
- W3001083904 cites W2325368899 @default.
- W3001083904 cites W2337897552 @default.
- W3001083904 cites W2339367607 @default.
- W3001083904 cites W2339890635 @default.