Matches in SemOpenAlex for { <https://semopenalex.org/work/W3001129757> ?p ?o ?g. }
- W3001129757 endingPage "215" @default.
- W3001129757 startingPage "200" @default.
- W3001129757 abstract "Many statistical scenarios initially involve several candidate models that describe the data-generating process. Analysis often proceeds by first selecting the best model according to some criterion and then learning about the parameters of this selected model. Crucially, however, in this approach the parameter estimates are conditioned on the selected model, and any uncertainty about the model-selection process is ignored. An alternative is to learn the parameters for all candidate models and then combine the estimates according to the posterior probabilities of the associated models. This approach is known as Bayesian model averaging (BMA). BMA has several important advantages over all-or-none selection methods, but has been used only sparingly in the social sciences. In this conceptual introduction, we explain the principles of BMA, describe its advantages over all-or-none model selection, and showcase its utility in three examples: analysis of covariance, meta-analysis, and network analysis." @default.
- W3001129757 created "2020-01-30" @default.
- W3001129757 creator A5028873710 @default.
- W3001129757 creator A5050541115 @default.
- W3001129757 creator A5082961171 @default.
- W3001129757 creator A5090294872 @default.
- W3001129757 date "2020-06-01" @default.
- W3001129757 modified "2023-10-18" @default.
- W3001129757 title "A Conceptual Introduction to Bayesian Model Averaging" @default.
- W3001129757 cites W1480175064 @default.
- W3001129757 cites W1488022545 @default.
- W3001129757 cites W1603903339 @default.
- W3001129757 cites W1940423692 @default.
- W3001129757 cites W1988591324 @default.
- W3001129757 cites W1998151455 @default.
- W3001129757 cites W2002314603 @default.
- W3001129757 cites W2016219233 @default.
- W3001129757 cites W2051264056 @default.
- W3001129757 cites W2056944867 @default.
- W3001129757 cites W2085574406 @default.
- W3001129757 cites W2098956244 @default.
- W3001129757 cites W2099170797 @default.
- W3001129757 cites W2111002840 @default.
- W3001129757 cites W2112615110 @default.
- W3001129757 cites W2127387319 @default.
- W3001129757 cites W2138905229 @default.
- W3001129757 cites W2143841415 @default.
- W3001129757 cites W2158196600 @default.
- W3001129757 cites W2169284121 @default.
- W3001129757 cites W2170882375 @default.
- W3001129757 cites W2316408149 @default.
- W3001129757 cites W2337665433 @default.
- W3001129757 cites W2412077171 @default.
- W3001129757 cites W2543067875 @default.
- W3001129757 cites W2584430770 @default.
- W3001129757 cites W25878055 @default.
- W3001129757 cites W2604455435 @default.
- W3001129757 cites W2606193717 @default.
- W3001129757 cites W2729207627 @default.
- W3001129757 cites W2742569683 @default.
- W3001129757 cites W2755647769 @default.
- W3001129757 cites W2767326152 @default.
- W3001129757 cites W2784576540 @default.
- W3001129757 cites W2788075142 @default.
- W3001129757 cites W2788746682 @default.
- W3001129757 cites W2790225700 @default.
- W3001129757 cites W2796160738 @default.
- W3001129757 cites W2797733738 @default.
- W3001129757 cites W2798087041 @default.
- W3001129757 cites W2892883002 @default.
- W3001129757 cites W2897117039 @default.
- W3001129757 cites W2909763451 @default.
- W3001129757 cites W2921430350 @default.
- W3001129757 cites W2942840404 @default.
- W3001129757 cites W3098237539 @default.
- W3001129757 cites W3124230025 @default.
- W3001129757 cites W4211177544 @default.
- W3001129757 cites W4241756512 @default.
- W3001129757 cites W2623838260 @default.
- W3001129757 doi "https://doi.org/10.1177/2515245919898657" @default.
- W3001129757 hasPublicationYear "2020" @default.
- W3001129757 type Work @default.
- W3001129757 sameAs 3001129757 @default.
- W3001129757 citedByCount "106" @default.
- W3001129757 countsByYear W30011297572019 @default.
- W3001129757 countsByYear W30011297572020 @default.
- W3001129757 countsByYear W30011297572021 @default.
- W3001129757 countsByYear W30011297572022 @default.
- W3001129757 countsByYear W30011297572023 @default.
- W3001129757 crossrefType "journal-article" @default.
- W3001129757 hasAuthorship W3001129757A5028873710 @default.
- W3001129757 hasAuthorship W3001129757A5050541115 @default.
- W3001129757 hasAuthorship W3001129757A5082961171 @default.
- W3001129757 hasAuthorship W3001129757A5090294872 @default.
- W3001129757 hasBestOaLocation W30011297571 @default.
- W3001129757 hasConcept C105795698 @default.
- W3001129757 hasConcept C107673813 @default.
- W3001129757 hasConcept C111919701 @default.
- W3001129757 hasConcept C119857082 @default.
- W3001129757 hasConcept C124101348 @default.
- W3001129757 hasConcept C149782125 @default.
- W3001129757 hasConcept C154945302 @default.
- W3001129757 hasConcept C160234255 @default.
- W3001129757 hasConcept C178650346 @default.
- W3001129757 hasConcept C33923547 @default.
- W3001129757 hasConcept C41008148 @default.
- W3001129757 hasConcept C81917197 @default.
- W3001129757 hasConcept C93959086 @default.
- W3001129757 hasConcept C98045186 @default.
- W3001129757 hasConceptScore W3001129757C105795698 @default.
- W3001129757 hasConceptScore W3001129757C107673813 @default.
- W3001129757 hasConceptScore W3001129757C111919701 @default.
- W3001129757 hasConceptScore W3001129757C119857082 @default.
- W3001129757 hasConceptScore W3001129757C124101348 @default.
- W3001129757 hasConceptScore W3001129757C149782125 @default.
- W3001129757 hasConceptScore W3001129757C154945302 @default.
- W3001129757 hasConceptScore W3001129757C160234255 @default.
- W3001129757 hasConceptScore W3001129757C178650346 @default.