Matches in SemOpenAlex for { <https://semopenalex.org/work/W3001609949> ?p ?o ?g. }
Showing items 1 to 62 of
62
with 100 items per page.
- W3001609949 abstract "Introduction: Developing new classification methods for human brain electrical activity patterns corresponding to actual movements or motor imagery is an essential interdisciplinary problem in brain-computer interface research. One of the most promising approaches is the development of methods based on artificial neural networks. Purpose: The development of ANN-based methods for classifying electroencephalographic patterns associated with motor imagery in untrained subjects. Methods: Classifiers based on linear neural networks, multi-layer perceptrons, radial basis function networks and support vector machines. Results: The authors selected the optimal type, topology, learning algorithms and parameters of an artificial neural network in order to provide the most accurate and fast classification of lower limb motor imagery EEG signals. It has been studied how the number of the analyzed channels of a multichannel EEG and their choice affect the quality of motor imagery patterns classification. Optimal configurations were obtained for the electrode arrangements. The influence of EEG pre-processing on the accuracy of motor imagery recognition was analyzed. A computational experiment showed the accuracy of 90-95% in untrained subjects. Radial basis function network demonstrated the best performance. Besides, the dataset dimensionality has been significantly reduced down to 6–12 channels without any classification accuracy loss. Practical relevance: The obtained results can be useful for the developers of motor imagery EEG classification algorithms used in brain-computer interfaces." @default.
- W3001609949 created "2020-01-30" @default.
- W3001609949 creator A5011965639 @default.
- W3001609949 creator A5025595136 @default.
- W3001609949 creator A5067378714 @default.
- W3001609949 date "2020-01-16" @default.
- W3001609949 modified "2023-09-27" @default.
- W3001609949 title "Classifying electrical activity of the brain during imaginary movements of untrained subjects using artificial neural networks" @default.
- W3001609949 doi "https://doi.org/10.31799/1684-8853-2019-6-77-84" @default.
- W3001609949 hasPublicationYear "2020" @default.
- W3001609949 type Work @default.
- W3001609949 sameAs 3001609949 @default.
- W3001609949 citedByCount "1" @default.
- W3001609949 countsByYear W30016099492020 @default.
- W3001609949 crossrefType "journal-article" @default.
- W3001609949 hasAuthorship W3001609949A5011965639 @default.
- W3001609949 hasAuthorship W3001609949A5025595136 @default.
- W3001609949 hasAuthorship W3001609949A5067378714 @default.
- W3001609949 hasBestOaLocation W30016099491 @default.
- W3001609949 hasConcept C119857082 @default.
- W3001609949 hasConcept C12267149 @default.
- W3001609949 hasConcept C153180895 @default.
- W3001609949 hasConcept C154945302 @default.
- W3001609949 hasConcept C15744967 @default.
- W3001609949 hasConcept C169760540 @default.
- W3001609949 hasConcept C173201364 @default.
- W3001609949 hasConcept C41008148 @default.
- W3001609949 hasConcept C50644808 @default.
- W3001609949 hasConcept C522805319 @default.
- W3001609949 hasConcept C54808283 @default.
- W3001609949 hasConcept C60908668 @default.
- W3001609949 hasConcept C98856871 @default.
- W3001609949 hasConceptScore W3001609949C119857082 @default.
- W3001609949 hasConceptScore W3001609949C12267149 @default.
- W3001609949 hasConceptScore W3001609949C153180895 @default.
- W3001609949 hasConceptScore W3001609949C154945302 @default.
- W3001609949 hasConceptScore W3001609949C15744967 @default.
- W3001609949 hasConceptScore W3001609949C169760540 @default.
- W3001609949 hasConceptScore W3001609949C173201364 @default.
- W3001609949 hasConceptScore W3001609949C41008148 @default.
- W3001609949 hasConceptScore W3001609949C50644808 @default.
- W3001609949 hasConceptScore W3001609949C522805319 @default.
- W3001609949 hasConceptScore W3001609949C54808283 @default.
- W3001609949 hasConceptScore W3001609949C60908668 @default.
- W3001609949 hasConceptScore W3001609949C98856871 @default.
- W3001609949 hasLocation W30016099491 @default.
- W3001609949 hasOpenAccess W3001609949 @default.
- W3001609949 hasPrimaryLocation W30016099491 @default.
- W3001609949 hasRelatedWork W10924315 @default.
- W3001609949 hasRelatedWork W11375610 @default.
- W3001609949 hasRelatedWork W13747797 @default.
- W3001609949 hasRelatedWork W14610598 @default.
- W3001609949 hasRelatedWork W300249 @default.
- W3001609949 hasRelatedWork W3794366 @default.
- W3001609949 hasRelatedWork W5190142 @default.
- W3001609949 hasRelatedWork W7218929 @default.
- W3001609949 hasRelatedWork W7607512 @default.
- W3001609949 hasRelatedWork W10152789 @default.
- W3001609949 isParatext "false" @default.
- W3001609949 isRetracted "false" @default.
- W3001609949 magId "3001609949" @default.
- W3001609949 workType "article" @default.