Matches in SemOpenAlex for { <https://semopenalex.org/work/W3001652577> ?p ?o ?g. }
- W3001652577 endingPage "417" @default.
- W3001652577 startingPage "409" @default.
- W3001652577 abstract "Frequent injections of anti-vascular endothelial growth factor (anti-VEGF) agents are a clinical burden for patients with neovascular age-related macular degeneration (AMD). Genomic disruption of VEGF-A using adeno-associated viral (AAV) delivery of clustered regularly interspaced short palindromic repeats (CRISPR)-Cas9 has the potential to permanently suppress aberrant angiogenesis, but the factors that determine the optimal efficacy are unknown. Here, we investigate two widely used Cas9 endonucleases, SpCas9 and SaCas9, and evaluate the relative contribution of AAV-delivery efficiency and genome-editing rates in vivo to determine the mechanisms that drive successful CRISPR-based suppression of VEGF-A, using a mouse model of laser-induced choroidal neovascularization (CNV). We found that SpCas9 demonstrated higher genome-editing rates, greater VEGF reduction, and more effective CNV suppression than SaCas9, despite similar AAV transduction efficiency between a dual-vector approach for SpCas9 and single-vector system for SaCas9 to deliver the Cas9 orthologs and single guide RNAs (gRNAs). Our results suggest that successful VEGF knockdown using AAV-mediated CRISPR systems may be determined more by the efficiency of genome editing rather than viral transduction and that SpCas9 may be more effective than SaCas9 as a potential therapeutic strategy for CRISPR-based treatment of CNV in neovascular AMD. Frequent injections of anti-vascular endothelial growth factor (anti-VEGF) agents are a clinical burden for patients with neovascular age-related macular degeneration (AMD). Genomic disruption of VEGF-A using adeno-associated viral (AAV) delivery of clustered regularly interspaced short palindromic repeats (CRISPR)-Cas9 has the potential to permanently suppress aberrant angiogenesis, but the factors that determine the optimal efficacy are unknown. Here, we investigate two widely used Cas9 endonucleases, SpCas9 and SaCas9, and evaluate the relative contribution of AAV-delivery efficiency and genome-editing rates in vivo to determine the mechanisms that drive successful CRISPR-based suppression of VEGF-A, using a mouse model of laser-induced choroidal neovascularization (CNV). We found that SpCas9 demonstrated higher genome-editing rates, greater VEGF reduction, and more effective CNV suppression than SaCas9, despite similar AAV transduction efficiency between a dual-vector approach for SpCas9 and single-vector system for SaCas9 to deliver the Cas9 orthologs and single guide RNAs (gRNAs). Our results suggest that successful VEGF knockdown using AAV-mediated CRISPR systems may be determined more by the efficiency of genome editing rather than viral transduction and that SpCas9 may be more effective than SaCas9 as a potential therapeutic strategy for CRISPR-based treatment of CNV in neovascular AMD." @default.
- W3001652577 created "2020-01-30" @default.
- W3001652577 creator A5004813701 @default.
- W3001652577 creator A5011630671 @default.
- W3001652577 creator A5015882658 @default.
- W3001652577 creator A5022550384 @default.
- W3001652577 creator A5027254298 @default.
- W3001652577 creator A5044266730 @default.
- W3001652577 creator A5045203649 @default.
- W3001652577 creator A5073775182 @default.
- W3001652577 creator A5076556728 @default.
- W3001652577 creator A5077412073 @default.
- W3001652577 creator A5084237230 @default.
- W3001652577 creator A5084436510 @default.
- W3001652577 creator A5088074344 @default.
- W3001652577 date "2020-06-01" @default.
- W3001652577 modified "2023-10-01" @default.
- W3001652577 title "Factors Impacting Efficacy of AAV-Mediated CRISPR-Based Genome Editing for Treatment of Choroidal Neovascularization" @default.
- W3001652577 cites W1731074416 @default.
- W3001652577 cites W178239812 @default.
- W3001652577 cites W1967004211 @default.
- W3001652577 cites W1976704017 @default.
- W3001652577 cites W1985388968 @default.
- W3001652577 cites W1996870435 @default.
- W3001652577 cites W1998330439 @default.
- W3001652577 cites W2003738028 @default.
- W3001652577 cites W2003797386 @default.
- W3001652577 cites W2005112733 @default.
- W3001652577 cites W2024173025 @default.
- W3001652577 cites W2028030005 @default.
- W3001652577 cites W2033277819 @default.
- W3001652577 cites W2041995936 @default.
- W3001652577 cites W2070614858 @default.
- W3001652577 cites W2081273617 @default.
- W3001652577 cites W2082054044 @default.
- W3001652577 cites W2087464200 @default.
- W3001652577 cites W2088255003 @default.
- W3001652577 cites W2123950745 @default.
- W3001652577 cites W2124736173 @default.
- W3001652577 cites W2131192872 @default.
- W3001652577 cites W2146587653 @default.
- W3001652577 cites W2172425918 @default.
- W3001652577 cites W2218055291 @default.
- W3001652577 cites W2233259956 @default.
- W3001652577 cites W2408923606 @default.
- W3001652577 cites W2416478801 @default.
- W3001652577 cites W2419233082 @default.
- W3001652577 cites W2461468522 @default.
- W3001652577 cites W2474071842 @default.
- W3001652577 cites W2508903105 @default.
- W3001652577 cites W2535404669 @default.
- W3001652577 cites W2554058929 @default.
- W3001652577 cites W2588613595 @default.
- W3001652577 cites W2590764628 @default.
- W3001652577 cites W2593815839 @default.
- W3001652577 cites W2598118151 @default.
- W3001652577 cites W2615193664 @default.
- W3001652577 cites W2735017428 @default.
- W3001652577 cites W2736625713 @default.
- W3001652577 cites W2759557314 @default.
- W3001652577 cites W2777540887 @default.
- W3001652577 cites W2800176137 @default.
- W3001652577 cites W2802665497 @default.
- W3001652577 cites W2891302442 @default.
- W3001652577 cites W2900885456 @default.
- W3001652577 cites W2901584673 @default.
- W3001652577 cites W2908873329 @default.
- W3001652577 cites W2933377962 @default.
- W3001652577 cites W2990165873 @default.
- W3001652577 cites W4250823169 @default.
- W3001652577 doi "https://doi.org/10.1016/j.omtm.2020.01.006" @default.
- W3001652577 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/7044682" @default.
- W3001652577 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/32128346" @default.
- W3001652577 hasPublicationYear "2020" @default.
- W3001652577 type Work @default.
- W3001652577 sameAs 3001652577 @default.
- W3001652577 citedByCount "24" @default.
- W3001652577 countsByYear W30016525772020 @default.
- W3001652577 countsByYear W30016525772021 @default.
- W3001652577 countsByYear W30016525772022 @default.
- W3001652577 countsByYear W30016525772023 @default.
- W3001652577 crossrefType "journal-article" @default.
- W3001652577 hasAuthorship W3001652577A5004813701 @default.
- W3001652577 hasAuthorship W3001652577A5011630671 @default.
- W3001652577 hasAuthorship W3001652577A5015882658 @default.
- W3001652577 hasAuthorship W3001652577A5022550384 @default.
- W3001652577 hasAuthorship W3001652577A5027254298 @default.
- W3001652577 hasAuthorship W3001652577A5044266730 @default.
- W3001652577 hasAuthorship W3001652577A5045203649 @default.
- W3001652577 hasAuthorship W3001652577A5073775182 @default.
- W3001652577 hasAuthorship W3001652577A5076556728 @default.
- W3001652577 hasAuthorship W3001652577A5077412073 @default.
- W3001652577 hasAuthorship W3001652577A5084237230 @default.
- W3001652577 hasAuthorship W3001652577A5084436510 @default.
- W3001652577 hasAuthorship W3001652577A5088074344 @default.
- W3001652577 hasBestOaLocation W30016525771 @default.
- W3001652577 hasConcept C104317684 @default.
- W3001652577 hasConcept C118487528 @default.