Matches in SemOpenAlex for { <https://semopenalex.org/work/W3001783131> ?p ?o ?g. }
- W3001783131 endingPage "4386" @default.
- W3001783131 startingPage "4349" @default.
- W3001783131 abstract "Purpose The purpose of this paper is to carry out a hydrodynamic and thermal analysis of turbulent forced-convection flows of pure water, pure ethylene glycol and water-ethylene glycol mixture, as base fluids dispersed by Al 2 O 3 nano-sized solid particles, through a constant temperature-surfaced rectangular cross-section channel with detached and attached obstacles, using a computational fluid dynamics (CFD) technique. Effects of various base fluids and different Al 2 O 3 nano-sized solid particle solid volume fractions with Reynolds numbers ranging from 5,000 to 50,000 were analyzed. The contour plots of dynamic pressure, stream-function, velocity-magnitude, axial velocity, transverse velocity, turbulent intensity, turbulent kinetic energy, turbulent viscosity and temperature fields, the axial velocity profiles, the local and average Nusselt numbers, as well as the local and average coefficients of skin friction, were obtained and investigated numerically. Design/methodology/approach The fluid flow and temperature fields were simulated using the Commercial CFD Software FLUENT. The same package included a preprocessor GAMBIT which was used to create the mesh needed for the solver. The RANS equations, along with the standard k-epsilon turbulence model and the energy equation were used to control the channel flow model. All the equations were discretized by the finite volume method using a two-dimensional formulation, using the semi-implicit method for pressure-linked equations pressure-velocity coupling algorithm. With regard to the flow characteristics, the interpolation QUICK scheme was applied, and a second-order upwind scheme was used for the pressure terms. The under-relaxation was changed between the values 0.3 and 1.0 to control the update of the computed variables at each iteration. Moreover, various grid systems were tested to analyze the effect of the grid size on the numerical solution. Then, the solutions are said to be converging when the normalized residuals are smaller than 10-12 and 10-9 for the energy equation and the other variables, respectively. The equations were iterated by the solver till it reached the needed residuals or when it stabilized at a fixed value. Findings The result analysis showed that the pure ethylene glycol with Al 2 O 3 nanoparticles showed a significant heat transfer enhancement, in terms of local and average Nusselt numbers, compared with other pure or mixed fluid-based nanofluids, with low-pressure losses in terms of local and average skin friction coefficients. Originality/value The present research ended up at interesting results which constitute a valuable contribution to the improvement of the knowledge basis of professional work through research related to turbulent flow forced-convection within channels supplied with obstacles, and especially inside heat exchangers and solar flat plate collectors." @default.
- W3001783131 created "2020-01-30" @default.
- W3001783131 creator A5015166750 @default.
- W3001783131 creator A5022621691 @default.
- W3001783131 creator A5036203501 @default.
- W3001783131 creator A5050533387 @default.
- W3001783131 creator A5056616099 @default.
- W3001783131 creator A5078159420 @default.
- W3001783131 date "2020-01-02" @default.
- W3001783131 modified "2023-10-14" @default.
- W3001783131 title "Hydrodynamic and thermal analysis of water, ethylene glycol and water-ethylene glycol as base fluids dispersed by aluminum oxide nano-sized solid particles" @default.
- W3001783131 cites W1970020978 @default.
- W3001783131 cites W1970806135 @default.
- W3001783131 cites W1975238623 @default.
- W3001783131 cites W1981401379 @default.
- W3001783131 cites W1984207681 @default.
- W3001783131 cites W1984495090 @default.
- W3001783131 cites W2002957578 @default.
- W3001783131 cites W2005765708 @default.
- W3001783131 cites W2009462298 @default.
- W3001783131 cites W2015155259 @default.
- W3001783131 cites W2023036980 @default.
- W3001783131 cites W2028363559 @default.
- W3001783131 cites W2033320069 @default.
- W3001783131 cites W2041029075 @default.
- W3001783131 cites W2133809661 @default.
- W3001783131 cites W2164756474 @default.
- W3001783131 cites W2208635947 @default.
- W3001783131 cites W2210760631 @default.
- W3001783131 cites W2264934233 @default.
- W3001783131 cites W2334997544 @default.
- W3001783131 cites W2342252576 @default.
- W3001783131 cites W2473434994 @default.
- W3001783131 cites W2520422817 @default.
- W3001783131 cites W2531144786 @default.
- W3001783131 cites W2558524339 @default.
- W3001783131 cites W2588990554 @default.
- W3001783131 cites W2623351196 @default.
- W3001783131 cites W2733609367 @default.
- W3001783131 cites W2737446981 @default.
- W3001783131 cites W2744206100 @default.
- W3001783131 cites W2770404945 @default.
- W3001783131 cites W2791627645 @default.
- W3001783131 cites W2793770018 @default.
- W3001783131 cites W2802228954 @default.
- W3001783131 cites W2806532167 @default.
- W3001783131 cites W2885984775 @default.
- W3001783131 cites W2893294266 @default.
- W3001783131 cites W2893957762 @default.
- W3001783131 cites W2897153593 @default.
- W3001783131 cites W2903342592 @default.
- W3001783131 cites W2904692060 @default.
- W3001783131 cites W2906758796 @default.
- W3001783131 cites W2935916527 @default.
- W3001783131 cites W2944378465 @default.
- W3001783131 cites W2949978204 @default.
- W3001783131 cites W2959809563 @default.
- W3001783131 cites W2963588648 @default.
- W3001783131 cites W2963902884 @default.
- W3001783131 cites W2966891062 @default.
- W3001783131 cites W2976526707 @default.
- W3001783131 cites W4244525528 @default.
- W3001783131 cites W2011163478 @default.
- W3001783131 doi "https://doi.org/10.1108/hff-10-2019-0739" @default.
- W3001783131 hasPublicationYear "2020" @default.
- W3001783131 type Work @default.
- W3001783131 sameAs 3001783131 @default.
- W3001783131 citedByCount "74" @default.
- W3001783131 countsByYear W30017831312020 @default.
- W3001783131 countsByYear W30017831312021 @default.
- W3001783131 countsByYear W30017831312022 @default.
- W3001783131 countsByYear W30017831312023 @default.
- W3001783131 crossrefType "journal-article" @default.
- W3001783131 hasAuthorship W3001783131A5015166750 @default.
- W3001783131 hasAuthorship W3001783131A5022621691 @default.
- W3001783131 hasAuthorship W3001783131A5036203501 @default.
- W3001783131 hasAuthorship W3001783131A5050533387 @default.
- W3001783131 hasAuthorship W3001783131A5056616099 @default.
- W3001783131 hasAuthorship W3001783131A5078159420 @default.
- W3001783131 hasConcept C121332964 @default.
- W3001783131 hasConcept C130230704 @default.
- W3001783131 hasConcept C15476950 @default.
- W3001783131 hasConcept C1633027 @default.
- W3001783131 hasConcept C182748727 @default.
- W3001783131 hasConcept C192562407 @default.
- W3001783131 hasConcept C196558001 @default.
- W3001783131 hasConcept C32526432 @default.
- W3001783131 hasConcept C57879066 @default.
- W3001783131 hasConcept C97355855 @default.
- W3001783131 hasConceptScore W3001783131C121332964 @default.
- W3001783131 hasConceptScore W3001783131C130230704 @default.
- W3001783131 hasConceptScore W3001783131C15476950 @default.
- W3001783131 hasConceptScore W3001783131C1633027 @default.
- W3001783131 hasConceptScore W3001783131C182748727 @default.
- W3001783131 hasConceptScore W3001783131C192562407 @default.
- W3001783131 hasConceptScore W3001783131C196558001 @default.
- W3001783131 hasConceptScore W3001783131C32526432 @default.
- W3001783131 hasConceptScore W3001783131C57879066 @default.