Matches in SemOpenAlex for { <https://semopenalex.org/work/W3001943432> ?p ?o ?g. }
- W3001943432 abstract "This paper proposes a novel deep subspace clustering approach which uses convolutional autoencoders to transform input images into new representations lying on a union of linear subspaces. The first contribution of our work is to insert multiple fully-connected linear layers between the encoder layers and their corresponding decoder layers to promote learning more favorable representations for subspace clustering. These connection layers facilitate the feature learning procedure by combining low-level and high-level information for generating multiple sets of self-expressive and informative representations at different levels of the encoder. Moreover, we introduce a novel loss minimization problem which leverages an initial clustering of the samples to effectively fuse the multi-level representations and recover the underlying subspaces more accurately. The loss function is then minimized through an iterative scheme which alternatively updates the network parameters and produces new clusterings of the samples. Experiments on four real-world datasets demonstrate that our approach exhibits superior performance compared to the state-of-the-art methods on most of the subspace clustering problems." @default.
- W3001943432 created "2020-01-30" @default.
- W3001943432 creator A5001793251 @default.
- W3001943432 creator A5002638643 @default.
- W3001943432 creator A5054855377 @default.
- W3001943432 date "2020-01-19" @default.
- W3001943432 modified "2023-09-27" @default.
- W3001943432 title "Multi-Level Representation Learning for Deep Subspace Clustering" @default.
- W3001943432 cites W1847754797 @default.
- W3001943432 cites W1931947167 @default.
- W3001943432 cites W1977496278 @default.
- W3001943432 cites W1981458038 @default.
- W3001943432 cites W1992300915 @default.
- W3001943432 cites W1993962865 @default.
- W3001943432 cites W1997201895 @default.
- W3001943432 cites W2005525356 @default.
- W3001943432 cites W2006533296 @default.
- W3001943432 cites W2013712253 @default.
- W3001943432 cites W2017441234 @default.
- W3001943432 cites W2037549374 @default.
- W3001943432 cites W2040329636 @default.
- W3001943432 cites W2099471712 @default.
- W3001943432 cites W2103943817 @default.
- W3001943432 cites W2114554887 @default.
- W3001943432 cites W2121947440 @default.
- W3001943432 cites W2136655611 @default.
- W3001943432 cites W2150414161 @default.
- W3001943432 cites W2160616617 @default.
- W3001943432 cites W2165874743 @default.
- W3001943432 cites W2197707282 @default.
- W3001943432 cites W2199534117 @default.
- W3001943432 cites W2372584135 @default.
- W3001943432 cites W2405933695 @default.
- W3001943432 cites W2528729631 @default.
- W3001943432 cites W2546325542 @default.
- W3001943432 cites W2556467266 @default.
- W3001943432 cites W2561426102 @default.
- W3001943432 cites W2571899125 @default.
- W3001943432 cites W2604647163 @default.
- W3001943432 cites W2787885212 @default.
- W3001943432 cites W2797653144 @default.
- W3001943432 cites W2798534672 @default.
- W3001943432 cites W2809034148 @default.
- W3001943432 cites W2890179185 @default.
- W3001943432 cites W2890462169 @default.
- W3001943432 cites W2943678367 @default.
- W3001943432 cites W2951004968 @default.
- W3001943432 cites W2951311921 @default.
- W3001943432 cites W2952228992 @default.
- W3001943432 cites W2963226019 @default.
- W3001943432 cites W2963365397 @default.
- W3001943432 cites W2963764968 @default.
- W3001943432 cites W2963840432 @default.
- W3001943432 cites W2964074409 @default.
- W3001943432 cites W2964121744 @default.
- W3001943432 cites W2979685515 @default.
- W3001943432 hasPublicationYear "2020" @default.
- W3001943432 type Work @default.
- W3001943432 sameAs 3001943432 @default.
- W3001943432 citedByCount "1" @default.
- W3001943432 countsByYear W30019434322020 @default.
- W3001943432 crossrefType "posted-content" @default.
- W3001943432 hasAuthorship W3001943432A5001793251 @default.
- W3001943432 hasAuthorship W3001943432A5002638643 @default.
- W3001943432 hasAuthorship W3001943432A5054855377 @default.
- W3001943432 hasConcept C108583219 @default.
- W3001943432 hasConcept C111919701 @default.
- W3001943432 hasConcept C118505674 @default.
- W3001943432 hasConcept C119599485 @default.
- W3001943432 hasConcept C12362212 @default.
- W3001943432 hasConcept C127413603 @default.
- W3001943432 hasConcept C138885662 @default.
- W3001943432 hasConcept C141353440 @default.
- W3001943432 hasConcept C153180895 @default.
- W3001943432 hasConcept C154945302 @default.
- W3001943432 hasConcept C17744445 @default.
- W3001943432 hasConcept C199539241 @default.
- W3001943432 hasConcept C2524010 @default.
- W3001943432 hasConcept C2776359362 @default.
- W3001943432 hasConcept C2776401178 @default.
- W3001943432 hasConcept C32834561 @default.
- W3001943432 hasConcept C33923547 @default.
- W3001943432 hasConcept C41008148 @default.
- W3001943432 hasConcept C41895202 @default.
- W3001943432 hasConcept C59404180 @default.
- W3001943432 hasConcept C73555534 @default.
- W3001943432 hasConcept C94625758 @default.
- W3001943432 hasConceptScore W3001943432C108583219 @default.
- W3001943432 hasConceptScore W3001943432C111919701 @default.
- W3001943432 hasConceptScore W3001943432C118505674 @default.
- W3001943432 hasConceptScore W3001943432C119599485 @default.
- W3001943432 hasConceptScore W3001943432C12362212 @default.
- W3001943432 hasConceptScore W3001943432C127413603 @default.
- W3001943432 hasConceptScore W3001943432C138885662 @default.
- W3001943432 hasConceptScore W3001943432C141353440 @default.
- W3001943432 hasConceptScore W3001943432C153180895 @default.
- W3001943432 hasConceptScore W3001943432C154945302 @default.
- W3001943432 hasConceptScore W3001943432C17744445 @default.
- W3001943432 hasConceptScore W3001943432C199539241 @default.
- W3001943432 hasConceptScore W3001943432C2524010 @default.