Matches in SemOpenAlex for { <https://semopenalex.org/work/W3001967521> ?p ?o ?g. }
Showing items 1 to 76 of
76
with 100 items per page.
- W3001967521 abstract "Abstract The aim of this work is to introduce a novel approach for the universal description of the thermodynamic functions of pure substances on the basis of artificial neural networks. The proposed approximation method is able to describe the thermodynamic functions ( $$C_{p}(T), S(T), H(T)-H(T_{mathrm{ref}}), G(T)$$ <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML> <mml:mrow> <mml:msub> <mml:mi>C</mml:mi> <mml:mi>p</mml:mi> </mml:msub> <mml:mrow> <mml:mo>(</mml:mo> <mml:mi>T</mml:mi> <mml:mo>)</mml:mo> </mml:mrow> <mml:mo>,</mml:mo> <mml:mi>S</mml:mi> <mml:mrow> <mml:mo>(</mml:mo> <mml:mi>T</mml:mi> <mml:mo>)</mml:mo> </mml:mrow> <mml:mo>,</mml:mo> <mml:mi>H</mml:mi> <mml:mrow> <mml:mo>(</mml:mo> <mml:mi>T</mml:mi> <mml:mo>)</mml:mo> </mml:mrow> <mml:mo>-</mml:mo> <mml:mi>H</mml:mi> <mml:mrow> <mml:mo>(</mml:mo> <mml:msub> <mml:mi>T</mml:mi> <mml:mi>ref</mml:mi> </mml:msub> <mml:mo>)</mml:mo> </mml:mrow> <mml:mo>,</mml:mo> <mml:mi>G</mml:mi> <mml:mrow> <mml:mo>(</mml:mo> <mml:mi>T</mml:mi> <mml:mo>)</mml:mo> </mml:mrow> </mml:mrow> </mml:math> ) of the different phases of unary material systems in a wide temperature range (between 0 and 6000 K). Phase transition temperatures and the respective enthalpies of transformation, which are computationally determined by the minimization of the Gibbs free energy, are also approximated. This is achieved by using artificial neural networks as models for the thermodynamic functions of the individual phases and by expressing the thermodynamic quantities in terms of the free network parameters. The resulting expressions are then optimized with machine learning algorithms on the basis of measurement data. A physical basis for the resulting approximation is given by the use of, among others, Planck–Einstein functions as activation function of the neurons of the network. This article provides a description of the method and as an example of a specific application the approximation of the thermodynamic functions of the different phases of pure iron. The article focuses on the problem of the representation of thermodynamic data and their practical application." @default.
- W3001967521 created "2020-01-30" @default.
- W3001967521 creator A5002763019 @default.
- W3001967521 date "2020-01-22" @default.
- W3001967521 modified "2023-09-23" @default.
- W3001967521 title "An artificial neural network model for the unary description of pure substances and its application on the thermodynamic modelling of pure iron" @default.
- W3001967521 cites W1965213936 @default.
- W3001967521 cites W1971770752 @default.
- W3001967521 cites W1973760005 @default.
- W3001967521 cites W1973830920 @default.
- W3001967521 cites W1976357338 @default.
- W3001967521 cites W1978128750 @default.
- W3001967521 cites W1979766176 @default.
- W3001967521 cites W1988115241 @default.
- W3001967521 cites W1989424333 @default.
- W3001967521 cites W1991779674 @default.
- W3001967521 cites W2009556296 @default.
- W3001967521 cites W2023743687 @default.
- W3001967521 cites W2024290657 @default.
- W3001967521 cites W2039429655 @default.
- W3001967521 cites W2039447905 @default.
- W3001967521 cites W2051773553 @default.
- W3001967521 cites W2054341867 @default.
- W3001967521 cites W2065409151 @default.
- W3001967521 cites W2073087303 @default.
- W3001967521 cites W2077217468 @default.
- W3001967521 cites W2080675043 @default.
- W3001967521 cites W2081901706 @default.
- W3001967521 cites W2093389500 @default.
- W3001967521 cites W2101723133 @default.
- W3001967521 cites W2102214968 @default.
- W3001967521 cites W2116344083 @default.
- W3001967521 cites W2143908786 @default.
- W3001967521 cites W2319668908 @default.
- W3001967521 cites W2324254600 @default.
- W3001967521 cites W2324581333 @default.
- W3001967521 cites W2336038900 @default.
- W3001967521 cites W2410711035 @default.
- W3001967521 cites W2501013689 @default.
- W3001967521 cites W2507984219 @default.
- W3001967521 cites W2606275833 @default.
- W3001967521 cites W4239610818 @default.
- W3001967521 cites W4239700089 @default.
- W3001967521 doi "https://doi.org/10.1007/s00500-019-04663-3" @default.
- W3001967521 hasPublicationYear "2020" @default.
- W3001967521 type Work @default.
- W3001967521 sameAs 3001967521 @default.
- W3001967521 citedByCount "3" @default.
- W3001967521 countsByYear W30019675212020 @default.
- W3001967521 countsByYear W30019675212021 @default.
- W3001967521 crossrefType "journal-article" @default.
- W3001967521 hasAuthorship W3001967521A5002763019 @default.
- W3001967521 hasBestOaLocation W30019675211 @default.
- W3001967521 hasConcept C11413529 @default.
- W3001967521 hasConcept C192562407 @default.
- W3001967521 hasConcept C41008148 @default.
- W3001967521 hasConceptScore W3001967521C11413529 @default.
- W3001967521 hasConceptScore W3001967521C192562407 @default.
- W3001967521 hasConceptScore W3001967521C41008148 @default.
- W3001967521 hasLocation W30019675211 @default.
- W3001967521 hasOpenAccess W3001967521 @default.
- W3001967521 hasPrimaryLocation W30019675211 @default.
- W3001967521 hasRelatedWork W11765363 @default.
- W3001967521 hasRelatedWork W11958881 @default.
- W3001967521 hasRelatedWork W12601666 @default.
- W3001967521 hasRelatedWork W12982028 @default.
- W3001967521 hasRelatedWork W2305996 @default.
- W3001967521 hasRelatedWork W4235637 @default.
- W3001967521 hasRelatedWork W5337492 @default.
- W3001967521 hasRelatedWork W5687595 @default.
- W3001967521 hasRelatedWork W711100 @default.
- W3001967521 hasRelatedWork W7825851 @default.
- W3001967521 isParatext "false" @default.
- W3001967521 isRetracted "false" @default.
- W3001967521 magId "3001967521" @default.
- W3001967521 workType "article" @default.