Matches in SemOpenAlex for { <https://semopenalex.org/work/W3002034139> ?p ?o ?g. }
Showing items 1 to 88 of
88
with 100 items per page.
- W3002034139 abstract "Gene expression data mostly available as cancer data have major challenges such as analyze, pattern matching and classification. Sometime task become more complex with large number of genes and small samples are available with noise and redundant information. Meaningful correlated information from dataset is the first and most important steps to be extracted for better diagnosis through artificial intelligence (AI). Accordingly, recent work for AI based classification and prognosis are focused in two steps process that is: (a) Feature extraction, and, (b) Ensemble Classification. Feature extraction will help in eliminating redundant and irrelevant genes, whereas ensemble classifier will help to optimize the accuracy. In this paper, we use double RBF kernel function for feature selection and novel fusion-procedure for enhance the performance of three base classifiers i.e., K Nearest Neighbor (KNN), Multi-Layer Perceptron (MLP) and Decision Tree (DT). Training of classifier is implemented based on k-fold cross validation techniques. The predicted accuracy of the proposed model has been compared with recent fusion methods such as Majority Voting, Distribution Summation and Dempster–Shafer on six benchmark cancer datasets. Experiment evaluation and result analysis gives promising and better performance than other fusion strategies, aiming at our goal-functions. Wisconsin Breast prognosis dataset is used with the proposed model for gene selection and prognosis prediction." @default.
- W3002034139 created "2020-01-30" @default.
- W3002034139 creator A5042537926 @default.
- W3002034139 creator A5064238926 @default.
- W3002034139 creator A5084836925 @default.
- W3002034139 date "2020-01-01" @default.
- W3002034139 modified "2023-09-24" @default.
- W3002034139 title "Ensemble Classification Approach for Cancer Prognosis and Prediction" @default.
- W3002034139 cites W1909207154 @default.
- W3002034139 cites W1989790332 @default.
- W3002034139 cites W1997636678 @default.
- W3002034139 cites W2037721365 @default.
- W3002034139 cites W2078182559 @default.
- W3002034139 cites W2103496339 @default.
- W3002034139 cites W2135293965 @default.
- W3002034139 cites W2151537585 @default.
- W3002034139 cites W2158275940 @default.
- W3002034139 cites W2164568552 @default.
- W3002034139 cites W2222577885 @default.
- W3002034139 cites W2401884003 @default.
- W3002034139 cites W2611370172 @default.
- W3002034139 cites W2618613105 @default.
- W3002034139 cites W2899235613 @default.
- W3002034139 cites W4205947740 @default.
- W3002034139 doi "https://doi.org/10.1007/978-3-030-39033-4_12" @default.
- W3002034139 hasPublicationYear "2020" @default.
- W3002034139 type Work @default.
- W3002034139 sameAs 3002034139 @default.
- W3002034139 citedByCount "0" @default.
- W3002034139 crossrefType "book-chapter" @default.
- W3002034139 hasAuthorship W3002034139A5042537926 @default.
- W3002034139 hasAuthorship W3002034139A5064238926 @default.
- W3002034139 hasAuthorship W3002034139A5084836925 @default.
- W3002034139 hasConcept C106135958 @default.
- W3002034139 hasConcept C119857082 @default.
- W3002034139 hasConcept C12267149 @default.
- W3002034139 hasConcept C124101348 @default.
- W3002034139 hasConcept C132778050 @default.
- W3002034139 hasConcept C148483581 @default.
- W3002034139 hasConcept C153180895 @default.
- W3002034139 hasConcept C153668964 @default.
- W3002034139 hasConcept C154945302 @default.
- W3002034139 hasConcept C17744445 @default.
- W3002034139 hasConcept C199539241 @default.
- W3002034139 hasConcept C41008148 @default.
- W3002034139 hasConcept C45942800 @default.
- W3002034139 hasConcept C50644808 @default.
- W3002034139 hasConcept C520049643 @default.
- W3002034139 hasConcept C60908668 @default.
- W3002034139 hasConcept C84525736 @default.
- W3002034139 hasConcept C94625758 @default.
- W3002034139 hasConcept C95623464 @default.
- W3002034139 hasConceptScore W3002034139C106135958 @default.
- W3002034139 hasConceptScore W3002034139C119857082 @default.
- W3002034139 hasConceptScore W3002034139C12267149 @default.
- W3002034139 hasConceptScore W3002034139C124101348 @default.
- W3002034139 hasConceptScore W3002034139C132778050 @default.
- W3002034139 hasConceptScore W3002034139C148483581 @default.
- W3002034139 hasConceptScore W3002034139C153180895 @default.
- W3002034139 hasConceptScore W3002034139C153668964 @default.
- W3002034139 hasConceptScore W3002034139C154945302 @default.
- W3002034139 hasConceptScore W3002034139C17744445 @default.
- W3002034139 hasConceptScore W3002034139C199539241 @default.
- W3002034139 hasConceptScore W3002034139C41008148 @default.
- W3002034139 hasConceptScore W3002034139C45942800 @default.
- W3002034139 hasConceptScore W3002034139C50644808 @default.
- W3002034139 hasConceptScore W3002034139C520049643 @default.
- W3002034139 hasConceptScore W3002034139C60908668 @default.
- W3002034139 hasConceptScore W3002034139C84525736 @default.
- W3002034139 hasConceptScore W3002034139C94625758 @default.
- W3002034139 hasConceptScore W3002034139C95623464 @default.
- W3002034139 hasLocation W30020341391 @default.
- W3002034139 hasOpenAccess W3002034139 @default.
- W3002034139 hasPrimaryLocation W30020341391 @default.
- W3002034139 hasRelatedWork W13088575 @default.
- W3002034139 hasRelatedWork W14115579 @default.
- W3002034139 hasRelatedWork W14430987 @default.
- W3002034139 hasRelatedWork W4680410 @default.
- W3002034139 hasRelatedWork W6552940 @default.
- W3002034139 hasRelatedWork W6680660 @default.
- W3002034139 hasRelatedWork W8167600 @default.
- W3002034139 hasRelatedWork W8267861 @default.
- W3002034139 hasRelatedWork W9481221 @default.
- W3002034139 hasRelatedWork W8703812 @default.
- W3002034139 isParatext "false" @default.
- W3002034139 isRetracted "false" @default.
- W3002034139 magId "3002034139" @default.
- W3002034139 workType "book-chapter" @default.