Matches in SemOpenAlex for { <https://semopenalex.org/work/W3002189898> ?p ?o ?g. }
Showing items 1 to 97 of
97
with 100 items per page.
- W3002189898 endingPage "349" @default.
- W3002189898 startingPage "334" @default.
- W3002189898 abstract "Network slicing is a key technology in 5G communications system. Its purpose is to dynamically and efficiently allocate resources for diversified services with distinct requirements over a common underlying physical infrastructure. Therein, demand-aware resource allocation is of significant importance to network slicing. In this paper, we consider a scenario that contains several slices in a radio access network with base stations that share the same physical resources (e.g., bandwidth or slots). We leverage deep reinforcement learning (DRL) to solve this problem by considering the varying service demands as the environment state and the allocated resources as the environment action. In order to reduce the effects of the annoying randomness and noise embedded in the received service level agreement (SLA) satisfaction ratio (SSR) and spectrum efficiency (SE), we primarily propose generative adversarial network-powered deep distributional Q network (GAN-DDQN) to learn the action-value distribution driven by minimizing the discrepancy between the estimated action-value distribution and the target action-value distribution. We put forward a reward-clipping mechanism to stabilize GAN-DDQN training against the effects of widely-spanning utility values. Moreover, we further develop Dueling GAN-DDQN, which uses a specially designed dueling generator, to learn the action-value distribution by estimating the state-value distribution and the action advantage function. Finally, we verify the performance of the proposed GAN-DDQN and Dueling GAN-DDQN algorithms through extensive simulations." @default.
- W3002189898 created "2020-01-30" @default.
- W3002189898 creator A5013688157 @default.
- W3002189898 creator A5014842979 @default.
- W3002189898 creator A5036831868 @default.
- W3002189898 creator A5065252700 @default.
- W3002189898 creator A5090543058 @default.
- W3002189898 date "2020-02-01" @default.
- W3002189898 modified "2023-10-15" @default.
- W3002189898 title "GAN-Powered Deep Distributional Reinforcement Learning for Resource Management in Network Slicing" @default.
- W3002189898 cites W2145339207 @default.
- W3002189898 cites W2169982856 @default.
- W3002189898 cites W2468115901 @default.
- W3002189898 cites W2513616575 @default.
- W3002189898 cites W2597003067 @default.
- W3002189898 cites W2597068831 @default.
- W3002189898 cites W2602923095 @default.
- W3002189898 cites W2604174486 @default.
- W3002189898 cites W2612074600 @default.
- W3002189898 cites W2741401130 @default.
- W3002189898 cites W2744111766 @default.
- W3002189898 cites W2744184417 @default.
- W3002189898 cites W2754368137 @default.
- W3002189898 cites W2772526503 @default.
- W3002189898 cites W2783558323 @default.
- W3002189898 cites W2786932819 @default.
- W3002189898 cites W2791695580 @default.
- W3002189898 cites W2793519446 @default.
- W3002189898 cites W2794265928 @default.
- W3002189898 cites W2801412442 @default.
- W3002189898 cites W2805173205 @default.
- W3002189898 cites W2900804979 @default.
- W3002189898 cites W2911855096 @default.
- W3002189898 cites W2952685986 @default.
- W3002189898 cites W2964112281 @default.
- W3002189898 cites W32403112 @default.
- W3002189898 cites W4214717370 @default.
- W3002189898 cites W4241996101 @default.
- W3002189898 doi "https://doi.org/10.1109/jsac.2019.2959185" @default.
- W3002189898 hasPublicationYear "2020" @default.
- W3002189898 type Work @default.
- W3002189898 sameAs 3002189898 @default.
- W3002189898 citedByCount "114" @default.
- W3002189898 countsByYear W30021898982020 @default.
- W3002189898 countsByYear W30021898982021 @default.
- W3002189898 countsByYear W30021898982022 @default.
- W3002189898 countsByYear W30021898982023 @default.
- W3002189898 crossrefType "journal-article" @default.
- W3002189898 hasAuthorship W3002189898A5013688157 @default.
- W3002189898 hasAuthorship W3002189898A5014842979 @default.
- W3002189898 hasAuthorship W3002189898A5036831868 @default.
- W3002189898 hasAuthorship W3002189898A5065252700 @default.
- W3002189898 hasAuthorship W3002189898A5090543058 @default.
- W3002189898 hasBestOaLocation W30021898982 @default.
- W3002189898 hasConcept C120314980 @default.
- W3002189898 hasConcept C136764020 @default.
- W3002189898 hasConcept C153083717 @default.
- W3002189898 hasConcept C154945302 @default.
- W3002189898 hasConcept C2776190703 @default.
- W3002189898 hasConcept C2780609101 @default.
- W3002189898 hasConcept C31258907 @default.
- W3002189898 hasConcept C41008148 @default.
- W3002189898 hasConcept C97541855 @default.
- W3002189898 hasConceptScore W3002189898C120314980 @default.
- W3002189898 hasConceptScore W3002189898C136764020 @default.
- W3002189898 hasConceptScore W3002189898C153083717 @default.
- W3002189898 hasConceptScore W3002189898C154945302 @default.
- W3002189898 hasConceptScore W3002189898C2776190703 @default.
- W3002189898 hasConceptScore W3002189898C2780609101 @default.
- W3002189898 hasConceptScore W3002189898C31258907 @default.
- W3002189898 hasConceptScore W3002189898C41008148 @default.
- W3002189898 hasConceptScore W3002189898C97541855 @default.
- W3002189898 hasFunder F4320321001 @default.
- W3002189898 hasFunder F4320335787 @default.
- W3002189898 hasFunder F4320338464 @default.
- W3002189898 hasIssue "2" @default.
- W3002189898 hasLocation W30021898981 @default.
- W3002189898 hasLocation W30021898982 @default.
- W3002189898 hasOpenAccess W3002189898 @default.
- W3002189898 hasPrimaryLocation W30021898981 @default.
- W3002189898 hasRelatedWork W2097486318 @default.
- W3002189898 hasRelatedWork W2137530048 @default.
- W3002189898 hasRelatedWork W2138260944 @default.
- W3002189898 hasRelatedWork W2151342429 @default.
- W3002189898 hasRelatedWork W2360869927 @default.
- W3002189898 hasRelatedWork W2393746923 @default.
- W3002189898 hasRelatedWork W2768698792 @default.
- W3002189898 hasRelatedWork W2972496411 @default.
- W3002189898 hasRelatedWork W3033662781 @default.
- W3002189898 hasRelatedWork W4239223006 @default.
- W3002189898 hasVolume "38" @default.
- W3002189898 isParatext "false" @default.
- W3002189898 isRetracted "false" @default.
- W3002189898 magId "3002189898" @default.
- W3002189898 workType "article" @default.