Matches in SemOpenAlex for { <https://semopenalex.org/work/W3002226745> ?p ?o ?g. }
- W3002226745 abstract "Additive Manufacturing (AM) is a manufacturing paradigm that builds three-dimensional objects from a computer-aided design model by successively adding material layer by layer. AM has become very popular in the past decade due to its utility for fast prototyping such as 3D printing as well as manufacturing functional parts with complex geometries using processes such as laser metal deposition that would be difficult to create using traditional machining. As the process for creating an intricate part for an expensive metal such as Titanium is prohibitive with respect to cost, computational models are used to simulate the behavior of AM processes before the experimental run. However, as the simulations are computationally costly and time-consuming for predicting multiscale multi-physics phenomena in AM, physics-informed data-driven machine-learning systems for predicting the behavior of AM processes are immensely beneficial. Such models accelerate not only multiscale simulation tools but also empower real-time control systems using in-situ data. In this paper, we design and develop essential components of a scientific framework for developing a data-driven model-based real-time control system. Finite element methods are employed for solving time-dependent heat equations and developing the database. The proposed framework uses extremely randomized trees - an ensemble of bagged decision trees as the regression algorithm iteratively using temperatures of prior voxels and laser information as inputs to predict temperatures of subsequent voxels. The models achieve mean absolute percentage errors below 1% for predicting temperature profiles for AM processes. The code is made available for the research community at https://github.com/paularindam/ml-iter-additive." @default.
- W3002226745 created "2020-01-30" @default.
- W3002226745 creator A5001525854 @default.
- W3002226745 creator A5004659592 @default.
- W3002226745 creator A5024135770 @default.
- W3002226745 creator A5027852342 @default.
- W3002226745 creator A5030005269 @default.
- W3002226745 creator A5074976770 @default.
- W3002226745 creator A5087186760 @default.
- W3002226745 date "2019-10-01" @default.
- W3002226745 modified "2023-09-29" @default.
- W3002226745 title "A Real-Time Iterative Machine Learning Approach for Temperature Profile Prediction in Additive Manufacturing Processes" @default.
- W3002226745 cites W1513040993 @default.
- W3002226745 cites W1605688901 @default.
- W3002226745 cites W1969566657 @default.
- W3002226745 cites W1972322047 @default.
- W3002226745 cites W1979721103 @default.
- W3002226745 cites W1986138568 @default.
- W3002226745 cites W2006692168 @default.
- W3002226745 cites W2025138352 @default.
- W3002226745 cites W2033169180 @default.
- W3002226745 cites W2035263745 @default.
- W3002226745 cites W2041631774 @default.
- W3002226745 cites W2041670622 @default.
- W3002226745 cites W2051474952 @default.
- W3002226745 cites W2053483979 @default.
- W3002226745 cites W2056132907 @default.
- W3002226745 cites W2078236179 @default.
- W3002226745 cites W2085372143 @default.
- W3002226745 cites W2089843324 @default.
- W3002226745 cites W2091447774 @default.
- W3002226745 cites W2098459033 @default.
- W3002226745 cites W2148430292 @default.
- W3002226745 cites W2197692950 @default.
- W3002226745 cites W2224549323 @default.
- W3002226745 cites W2224770315 @default.
- W3002226745 cites W2269272287 @default.
- W3002226745 cites W2270937275 @default.
- W3002226745 cites W2280301170 @default.
- W3002226745 cites W2342277278 @default.
- W3002226745 cites W2500415654 @default.
- W3002226745 cites W2567885395 @default.
- W3002226745 cites W2606986809 @default.
- W3002226745 cites W2769988472 @default.
- W3002226745 cites W2782924686 @default.
- W3002226745 cites W2789837965 @default.
- W3002226745 cites W2793435880 @default.
- W3002226745 cites W2797690407 @default.
- W3002226745 cites W2798001778 @default.
- W3002226745 cites W2807389414 @default.
- W3002226745 cites W2887209285 @default.
- W3002226745 cites W2887592955 @default.
- W3002226745 cites W2889908171 @default.
- W3002226745 cites W2895046268 @default.
- W3002226745 cites W2898116879 @default.
- W3002226745 cites W2898582442 @default.
- W3002226745 cites W2901057844 @default.
- W3002226745 cites W2902452488 @default.
- W3002226745 cites W2912469459 @default.
- W3002226745 cites W2918230122 @default.
- W3002226745 cites W2950580808 @default.
- W3002226745 cites W2953053221 @default.
- W3002226745 cites W2963580633 @default.
- W3002226745 cites W2963784900 @default.
- W3002226745 cites W2972987306 @default.
- W3002226745 cites W2977255159 @default.
- W3002226745 cites W2977504565 @default.
- W3002226745 doi "https://doi.org/10.1109/dsaa.2019.00069" @default.
- W3002226745 hasPublicationYear "2019" @default.
- W3002226745 type Work @default.
- W3002226745 sameAs 3002226745 @default.
- W3002226745 citedByCount "27" @default.
- W3002226745 countsByYear W30022267452020 @default.
- W3002226745 countsByYear W30022267452021 @default.
- W3002226745 countsByYear W30022267452022 @default.
- W3002226745 countsByYear W30022267452023 @default.
- W3002226745 crossrefType "proceedings-article" @default.
- W3002226745 hasAuthorship W3002226745A5001525854 @default.
- W3002226745 hasAuthorship W3002226745A5004659592 @default.
- W3002226745 hasAuthorship W3002226745A5024135770 @default.
- W3002226745 hasAuthorship W3002226745A5027852342 @default.
- W3002226745 hasAuthorship W3002226745A5030005269 @default.
- W3002226745 hasAuthorship W3002226745A5074976770 @default.
- W3002226745 hasAuthorship W3002226745A5087186760 @default.
- W3002226745 hasBestOaLocation W30022267452 @default.
- W3002226745 hasConcept C111919701 @default.
- W3002226745 hasConcept C119857082 @default.
- W3002226745 hasConcept C127413603 @default.
- W3002226745 hasConcept C154945302 @default.
- W3002226745 hasConcept C2780395129 @default.
- W3002226745 hasConcept C41008148 @default.
- W3002226745 hasConcept C523214423 @default.
- W3002226745 hasConcept C54170458 @default.
- W3002226745 hasConcept C78519656 @default.
- W3002226745 hasConcept C98045186 @default.
- W3002226745 hasConceptScore W3002226745C111919701 @default.
- W3002226745 hasConceptScore W3002226745C119857082 @default.
- W3002226745 hasConceptScore W3002226745C127413603 @default.
- W3002226745 hasConceptScore W3002226745C154945302 @default.
- W3002226745 hasConceptScore W3002226745C2780395129 @default.