Matches in SemOpenAlex for { <https://semopenalex.org/work/W3002705197> ?p ?o ?g. }
- W3002705197 abstract "Echocardiography uses ultrasound technology to capture high temporal and spatial resolution images of the heart and surrounding structures, and is the most common imaging modality in cardiovascular medicine. Using convolutional neural networks on a large new dataset, we show that deep learning applied to echocardiography can identify local cardiac structures, estimate cardiac function, and predict systemic phenotypes that modify cardiovascular risk but not readily identifiable to human interpretation. Our deep learning model, EchoNet, accurately identified the presence of pacemaker leads (AUC = 0.89), enlarged left atrium (AUC = 0.86), left ventricular hypertrophy (AUC = 0.75), left ventricular end systolic and diastolic volumes ( R2 = 0.74 and R2 = 0.70), and ejection fraction ( R2 = 0.50), as well as predicted systemic phenotypes of age ( R2 = 0.46), sex (AUC = 0.88), weight ( R2 = 0.56), and height ( R2 = 0.33). Interpretation analysis validates that EchoNet shows appropriate attention to key cardiac structures when performing human-explainable tasks and highlights hypothesis-generating regions of interest when predicting systemic phenotypes difficult for human interpretation. Machine learning on echocardiography images can streamline repetitive tasks in the clinical workflow, provide preliminary interpretation in areas with insufficient qualified cardiologists, and predict phenotypes challenging for human evaluation." @default.
- W3002705197 created "2020-01-30" @default.
- W3002705197 creator A5002985172 @default.
- W3002705197 creator A5005779176 @default.
- W3002705197 creator A5034659013 @default.
- W3002705197 creator A5046725885 @default.
- W3002705197 creator A5060370891 @default.
- W3002705197 creator A5066885001 @default.
- W3002705197 creator A5075711252 @default.
- W3002705197 creator A5080552239 @default.
- W3002705197 creator A5083779857 @default.
- W3002705197 date "2020-01-24" @default.
- W3002705197 modified "2023-10-15" @default.
- W3002705197 title "Deep learning interpretation of echocardiograms" @default.
- W3002705197 cites W1787224781 @default.
- W3002705197 cites W1939947548 @default.
- W3002705197 cites W1996839881 @default.
- W3002705197 cites W1998451170 @default.
- W3002705197 cites W2016053056 @default.
- W3002705197 cites W2016923095 @default.
- W3002705197 cites W2031926143 @default.
- W3002705197 cites W2036639507 @default.
- W3002705197 cites W2063728958 @default.
- W3002705197 cites W2075541715 @default.
- W3002705197 cites W2091129321 @default.
- W3002705197 cites W2107436050 @default.
- W3002705197 cites W2107787955 @default.
- W3002705197 cites W2116118059 @default.
- W3002705197 cites W2130483595 @default.
- W3002705197 cites W2183341477 @default.
- W3002705197 cites W2266692974 @default.
- W3002705197 cites W2531494032 @default.
- W3002705197 cites W2559774877 @default.
- W3002705197 cites W2581082771 @default.
- W3002705197 cites W2600453013 @default.
- W3002705197 cites W2727650337 @default.
- W3002705197 cites W2738412997 @default.
- W3002705197 cites W2752747624 @default.
- W3002705197 cites W2760946358 @default.
- W3002705197 cites W2763458405 @default.
- W3002705197 cites W2896287590 @default.
- W3002705197 cites W2897320536 @default.
- W3002705197 cites W2898741363 @default.
- W3002705197 cites W2900965646 @default.
- W3002705197 cites W2901612843 @default.
- W3002705197 cites W2946185430 @default.
- W3002705197 cites W2949493305 @default.
- W3002705197 cites W2962843949 @default.
- W3002705197 cites W2963351448 @default.
- W3002705197 cites W2963428668 @default.
- W3002705197 cites W2964350391 @default.
- W3002705197 cites W2970154784 @default.
- W3002705197 cites W3023733355 @default.
- W3002705197 cites W3105445034 @default.
- W3002705197 cites W4249736682 @default.
- W3002705197 cites W54257720 @default.
- W3002705197 doi "https://doi.org/10.1038/s41746-019-0216-8" @default.
- W3002705197 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/6981156" @default.
- W3002705197 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/33483633" @default.
- W3002705197 hasPublicationYear "2020" @default.
- W3002705197 type Work @default.
- W3002705197 sameAs 3002705197 @default.
- W3002705197 citedByCount "208" @default.
- W3002705197 countsByYear W30027051972020 @default.
- W3002705197 countsByYear W30027051972021 @default.
- W3002705197 countsByYear W30027051972022 @default.
- W3002705197 countsByYear W30027051972023 @default.
- W3002705197 crossrefType "journal-article" @default.
- W3002705197 hasAuthorship W3002705197A5002985172 @default.
- W3002705197 hasAuthorship W3002705197A5005779176 @default.
- W3002705197 hasAuthorship W3002705197A5034659013 @default.
- W3002705197 hasAuthorship W3002705197A5046725885 @default.
- W3002705197 hasAuthorship W3002705197A5060370891 @default.
- W3002705197 hasAuthorship W3002705197A5066885001 @default.
- W3002705197 hasAuthorship W3002705197A5075711252 @default.
- W3002705197 hasAuthorship W3002705197A5080552239 @default.
- W3002705197 hasAuthorship W3002705197A5083779857 @default.
- W3002705197 hasBestOaLocation W30027051971 @default.
- W3002705197 hasConcept C108583219 @default.
- W3002705197 hasConcept C119857082 @default.
- W3002705197 hasConcept C126322002 @default.
- W3002705197 hasConcept C126838900 @default.
- W3002705197 hasConcept C154945302 @default.
- W3002705197 hasConcept C164705383 @default.
- W3002705197 hasConcept C2776002628 @default.
- W3002705197 hasConcept C2778198053 @default.
- W3002705197 hasConcept C41008148 @default.
- W3002705197 hasConcept C57900726 @default.
- W3002705197 hasConcept C71924100 @default.
- W3002705197 hasConcept C78085059 @default.
- W3002705197 hasConcept C81363708 @default.
- W3002705197 hasConcept C84393581 @default.
- W3002705197 hasConceptScore W3002705197C108583219 @default.
- W3002705197 hasConceptScore W3002705197C119857082 @default.
- W3002705197 hasConceptScore W3002705197C126322002 @default.
- W3002705197 hasConceptScore W3002705197C126838900 @default.
- W3002705197 hasConceptScore W3002705197C154945302 @default.
- W3002705197 hasConceptScore W3002705197C164705383 @default.
- W3002705197 hasConceptScore W3002705197C2776002628 @default.
- W3002705197 hasConceptScore W3002705197C2778198053 @default.