Matches in SemOpenAlex for { <https://semopenalex.org/work/W3002824892> ?p ?o ?g. }
- W3002824892 endingPage "1023" @default.
- W3002824892 startingPage "1011" @default.
- W3002824892 abstract "Purpose To evaluate different non‐Gaussian representations for the diffusion‐weighted imaging (DWI) signal in the b‐value range 200 to 3000 s/mm 2 in benign and malignant breast lesions. Methods Forty‐three patients diagnosed with benign (n = 18) or malignant (n = 25) tumors of the breast underwent DWI (b‐values 200, 600, 1200, 1800, 2400, and 3000 s/mm 2 ). Six different representations were fit to the average signal from regions of interest (ROIs) at different b‐value ranges. Quality of fit was assessed by the corrected Akaike information criterion (AICc), and the Friedman test was used for assessing representation ranks. The area under the curve (AUC) of receiver operating characteristic curves were used to evaluate the power of derived parameters to differentiate between malignant and benign lesions. The lesion ROI was divided in central and peripheral parts to assess potential effect of heterogeneity. Sensitivity to noise‐floor correction was also evaluated. Results The Padé exponent was ranked as the best based on AICc, whereas 3 models (kurtosis, fractional, and biexponential) achieved the highest AUC = 0.99 for lesion differentiation. The monoexponential model at b max = 600 s/mm 2 already provides AUC = 0.96, with considerably shorter acquisition time and simpler analysis. Significant differences between central and peripheral parts of lesions were found in malignant lesions. The mono‐ and biexponential models were most stable against varying degrees of noise‐floor correction. Conclusion Non‐Gaussian representations are required for fitting of the DWI curve at high b‐values in breast lesions. However, the added clinical value from the high b‐value data for differentiation of benign and malignant lesions is not clear." @default.
- W3002824892 created "2020-01-30" @default.
- W3002824892 creator A5004377967 @default.
- W3002824892 creator A5005489496 @default.
- W3002824892 creator A5008122850 @default.
- W3002824892 creator A5011108019 @default.
- W3002824892 creator A5041269751 @default.
- W3002824892 creator A5044035919 @default.
- W3002824892 creator A5048958365 @default.
- W3002824892 creator A5073757997 @default.
- W3002824892 creator A5087626511 @default.
- W3002824892 date "2020-01-23" @default.
- W3002824892 modified "2023-10-06" @default.
- W3002824892 title "Modeling the diffusion‐weighted imaging signal for breast lesions in the b = 200 to 3000 s/mm <sup>2</sup> range: quality of fit and classification accuracy for different representations" @default.
- W3002824892 cites W1562734631 @default.
- W3002824892 cites W1578777125 @default.
- W3002824892 cites W1935770383 @default.
- W3002824892 cites W1964264259 @default.
- W3002824892 cites W1966471572 @default.
- W3002824892 cites W1970936375 @default.
- W3002824892 cites W1990711988 @default.
- W3002824892 cites W2032622966 @default.
- W3002824892 cites W2043377096 @default.
- W3002824892 cites W2046498575 @default.
- W3002824892 cites W2046696576 @default.
- W3002824892 cites W2049685486 @default.
- W3002824892 cites W2049806363 @default.
- W3002824892 cites W2080935328 @default.
- W3002824892 cites W2082339873 @default.
- W3002824892 cites W2108358495 @default.
- W3002824892 cites W2116823839 @default.
- W3002824892 cites W2120862100 @default.
- W3002824892 cites W2129996649 @default.
- W3002824892 cites W2138038593 @default.
- W3002824892 cites W2139794744 @default.
- W3002824892 cites W2148564004 @default.
- W3002824892 cites W2213972894 @default.
- W3002824892 cites W2415327264 @default.
- W3002824892 cites W2491575270 @default.
- W3002824892 cites W2511059862 @default.
- W3002824892 cites W2557413788 @default.
- W3002824892 cites W2766451787 @default.
- W3002824892 cites W2801418638 @default.
- W3002824892 cites W4211245039 @default.
- W3002824892 doi "https://doi.org/10.1002/mrm.28161" @default.
- W3002824892 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/31975448" @default.
- W3002824892 hasPublicationYear "2020" @default.
- W3002824892 type Work @default.
- W3002824892 sameAs 3002824892 @default.
- W3002824892 citedByCount "15" @default.
- W3002824892 countsByYear W30028248922020 @default.
- W3002824892 countsByYear W30028248922021 @default.
- W3002824892 countsByYear W30028248922022 @default.
- W3002824892 countsByYear W30028248922023 @default.
- W3002824892 crossrefType "journal-article" @default.
- W3002824892 hasAuthorship W3002824892A5004377967 @default.
- W3002824892 hasAuthorship W3002824892A5005489496 @default.
- W3002824892 hasAuthorship W3002824892A5008122850 @default.
- W3002824892 hasAuthorship W3002824892A5011108019 @default.
- W3002824892 hasAuthorship W3002824892A5041269751 @default.
- W3002824892 hasAuthorship W3002824892A5044035919 @default.
- W3002824892 hasAuthorship W3002824892A5048958365 @default.
- W3002824892 hasAuthorship W3002824892A5073757997 @default.
- W3002824892 hasAuthorship W3002824892A5087626511 @default.
- W3002824892 hasBestOaLocation W30028248921 @default.
- W3002824892 hasConcept C105795698 @default.
- W3002824892 hasConcept C115961682 @default.
- W3002824892 hasConcept C121332964 @default.
- W3002824892 hasConcept C126322002 @default.
- W3002824892 hasConcept C126674687 @default.
- W3002824892 hasConcept C126838900 @default.
- W3002824892 hasConcept C143409427 @default.
- W3002824892 hasConcept C149550507 @default.
- W3002824892 hasConcept C154945302 @default.
- W3002824892 hasConcept C163716315 @default.
- W3002824892 hasConcept C166963901 @default.
- W3002824892 hasConcept C2989005 @default.
- W3002824892 hasConcept C33923547 @default.
- W3002824892 hasConcept C41008148 @default.
- W3002824892 hasConcept C58471807 @default.
- W3002824892 hasConcept C62520636 @default.
- W3002824892 hasConcept C71924100 @default.
- W3002824892 hasConcept C76318530 @default.
- W3002824892 hasConcept C99498987 @default.
- W3002824892 hasConceptScore W3002824892C105795698 @default.
- W3002824892 hasConceptScore W3002824892C115961682 @default.
- W3002824892 hasConceptScore W3002824892C121332964 @default.
- W3002824892 hasConceptScore W3002824892C126322002 @default.
- W3002824892 hasConceptScore W3002824892C126674687 @default.
- W3002824892 hasConceptScore W3002824892C126838900 @default.
- W3002824892 hasConceptScore W3002824892C143409427 @default.
- W3002824892 hasConceptScore W3002824892C149550507 @default.
- W3002824892 hasConceptScore W3002824892C154945302 @default.
- W3002824892 hasConceptScore W3002824892C163716315 @default.
- W3002824892 hasConceptScore W3002824892C166963901 @default.
- W3002824892 hasConceptScore W3002824892C2989005 @default.
- W3002824892 hasConceptScore W3002824892C33923547 @default.
- W3002824892 hasConceptScore W3002824892C41008148 @default.