Matches in SemOpenAlex for { <https://semopenalex.org/work/W3003075092> ?p ?o ?g. }
- W3003075092 abstract "Image segmentation has many important applications, particularly in medical imaging. Often medical images such as CTs have little contrast in them, and segmentation in such cases poses a great challenge to existing models without further user interaction. In this paper we propose an edge enhancement method based on the theory of reproducing kernel Hilbert spaces (RKHS) to model smooth components of an image, while separating the edges using approximated Heaviside functions. By modelling using this decomposition method, the approximated Heaviside function is capable of picking up more details than the usual method of using the image gradient. Further using this as an edge detector in a segmentation model can allow us to pick up a region of interest when low contrast between two objects is present and other models fail." @default.
- W3003075092 created "2020-01-30" @default.
- W3003075092 creator A5007397209 @default.
- W3003075092 creator A5054810335 @default.
- W3003075092 creator A5070984210 @default.
- W3003075092 creator A5084188467 @default.
- W3003075092 date "2020-01-01" @default.
- W3003075092 modified "2023-09-25" @default.
- W3003075092 title "Edge Enhancement for Image Segmentation Using a RKHS Method" @default.
- W3003075092 cites W1992644107 @default.
- W3003075092 cites W2049391017 @default.
- W3003075092 cites W2096851994 @default.
- W3003075092 cites W2104095591 @default.
- W3003075092 cites W2114487471 @default.
- W3003075092 cites W2116040950 @default.
- W3003075092 cites W2156650367 @default.
- W3003075092 cites W2159152281 @default.
- W3003075092 cites W2527114552 @default.
- W3003075092 cites W2587893236 @default.
- W3003075092 cites W3211330693 @default.
- W3003075092 doi "https://doi.org/10.1007/978-3-030-39343-4_17" @default.
- W3003075092 hasPublicationYear "2020" @default.
- W3003075092 type Work @default.
- W3003075092 sameAs 3003075092 @default.
- W3003075092 citedByCount "1" @default.
- W3003075092 countsByYear W30030750922020 @default.
- W3003075092 crossrefType "book-chapter" @default.
- W3003075092 hasAuthorship W3003075092A5007397209 @default.
- W3003075092 hasAuthorship W3003075092A5054810335 @default.
- W3003075092 hasAuthorship W3003075092A5070984210 @default.
- W3003075092 hasAuthorship W3003075092A5084188467 @default.
- W3003075092 hasConcept C114614502 @default.
- W3003075092 hasConcept C115961682 @default.
- W3003075092 hasConcept C124504099 @default.
- W3003075092 hasConcept C134306372 @default.
- W3003075092 hasConcept C14036430 @default.
- W3003075092 hasConcept C153180895 @default.
- W3003075092 hasConcept C154945302 @default.
- W3003075092 hasConcept C182037307 @default.
- W3003075092 hasConcept C193536780 @default.
- W3003075092 hasConcept C2776502983 @default.
- W3003075092 hasConcept C31972630 @default.
- W3003075092 hasConcept C33923547 @default.
- W3003075092 hasConcept C41008148 @default.
- W3003075092 hasConcept C62799726 @default.
- W3003075092 hasConcept C63099799 @default.
- W3003075092 hasConcept C65885262 @default.
- W3003075092 hasConcept C74193536 @default.
- W3003075092 hasConcept C78458016 @default.
- W3003075092 hasConcept C7980502 @default.
- W3003075092 hasConcept C80884492 @default.
- W3003075092 hasConcept C86803240 @default.
- W3003075092 hasConcept C89600930 @default.
- W3003075092 hasConcept C9417928 @default.
- W3003075092 hasConceptScore W3003075092C114614502 @default.
- W3003075092 hasConceptScore W3003075092C115961682 @default.
- W3003075092 hasConceptScore W3003075092C124504099 @default.
- W3003075092 hasConceptScore W3003075092C134306372 @default.
- W3003075092 hasConceptScore W3003075092C14036430 @default.
- W3003075092 hasConceptScore W3003075092C153180895 @default.
- W3003075092 hasConceptScore W3003075092C154945302 @default.
- W3003075092 hasConceptScore W3003075092C182037307 @default.
- W3003075092 hasConceptScore W3003075092C193536780 @default.
- W3003075092 hasConceptScore W3003075092C2776502983 @default.
- W3003075092 hasConceptScore W3003075092C31972630 @default.
- W3003075092 hasConceptScore W3003075092C33923547 @default.
- W3003075092 hasConceptScore W3003075092C41008148 @default.
- W3003075092 hasConceptScore W3003075092C62799726 @default.
- W3003075092 hasConceptScore W3003075092C63099799 @default.
- W3003075092 hasConceptScore W3003075092C65885262 @default.
- W3003075092 hasConceptScore W3003075092C74193536 @default.
- W3003075092 hasConceptScore W3003075092C78458016 @default.
- W3003075092 hasConceptScore W3003075092C7980502 @default.
- W3003075092 hasConceptScore W3003075092C80884492 @default.
- W3003075092 hasConceptScore W3003075092C86803240 @default.
- W3003075092 hasConceptScore W3003075092C89600930 @default.
- W3003075092 hasConceptScore W3003075092C9417928 @default.
- W3003075092 hasLocation W30030750921 @default.
- W3003075092 hasOpenAccess W3003075092 @default.
- W3003075092 hasPrimaryLocation W30030750921 @default.
- W3003075092 hasRelatedWork W1977359339 @default.
- W3003075092 hasRelatedWork W1988545226 @default.
- W3003075092 hasRelatedWork W2048623431 @default.
- W3003075092 hasRelatedWork W2063773190 @default.
- W3003075092 hasRelatedWork W2085432525 @default.
- W3003075092 hasRelatedWork W2137404025 @default.
- W3003075092 hasRelatedWork W2403161956 @default.
- W3003075092 hasRelatedWork W2588890459 @default.
- W3003075092 hasRelatedWork W2620516784 @default.
- W3003075092 hasRelatedWork W2747207782 @default.
- W3003075092 hasRelatedWork W2766257206 @default.
- W3003075092 hasRelatedWork W2775173866 @default.
- W3003075092 hasRelatedWork W2789986468 @default.
- W3003075092 hasRelatedWork W2791656145 @default.
- W3003075092 hasRelatedWork W2888848076 @default.
- W3003075092 hasRelatedWork W2901962399 @default.
- W3003075092 hasRelatedWork W2907398861 @default.
- W3003075092 hasRelatedWork W2995235358 @default.
- W3003075092 hasRelatedWork W3048102697 @default.
- W3003075092 hasRelatedWork W92710880 @default.