Matches in SemOpenAlex for { <https://semopenalex.org/work/W3003137894> ?p ?o ?g. }
- W3003137894 endingPage "5310" @default.
- W3003137894 startingPage "5294" @default.
- W3003137894 abstract "Cyber-physical systems (CPSs) are vulnerable to cyber-attacks. Nowadays, the detection of cyber-attacks in microgrids as examples of CPS has become an important topic due to their wide use in various practical applications from renewable energy plants to power distribution and electric transportation. In this article, we propose a new artificial intelligence (AI)-based method for the detection of cyber-attacks in direct current (dc) microgrids and also the identification of the attacked distributed energy resource (DER) unit. The proposed method works based on the time-series analysis and a nonlinear auto-regressive exogenous model (NARX) neural network, which is a special type of recurrent neural network for estimating dc voltages and currents. In the proposed method, we consider the effect of cyber-attacks named false data injection attacks (FDIAs), which try to affect the accurate voltage regulation and current sharing by affecting voltage and current sensors. In the presented strategy, first, a dc microgrid is operated and controlled without any FDIAs to gather enough data during the normal operation required for the training of NARX neural networks. It is worth mentioning that in the data generation process, load changing is also considered to have distinguishing data sets for load changing and cyber-attack scenarios. Trained and fine-tuned NARX neural networks are exploited in an online manner to estimate the output dc voltages and currents of DER units in dc microgrid. Then, based on the error of estimation, the cyber-attack is detected. To show the effectiveness of the proposed method, offline digital time-domain simulation studies are performed on a test dc microgrid system in the MATLAB/Simulink environment, and the results are verified using real-time simulations using the OPAL-RT real-time digital simulator (RTDS)." @default.
- W3003137894 created "2020-01-30" @default.
- W3003137894 creator A5014968958 @default.
- W3003137894 creator A5036511652 @default.
- W3003137894 creator A5039395705 @default.
- W3003137894 creator A5078176748 @default.
- W3003137894 date "2021-10-01" @default.
- W3003137894 modified "2023-10-16" @default.
- W3003137894 title "Detection of False Data Injection Cyber-Attacks in DC Microgrids Based on Recurrent Neural Networks" @default.
- W3003137894 cites W1967429206 @default.
- W3003137894 cites W2002254092 @default.
- W3003137894 cites W2002514774 @default.
- W3003137894 cites W2012352984 @default.
- W3003137894 cites W2032098152 @default.
- W3003137894 cites W2038651258 @default.
- W3003137894 cites W2039984414 @default.
- W3003137894 cites W2084943452 @default.
- W3003137894 cites W2091497071 @default.
- W3003137894 cites W2093197140 @default.
- W3003137894 cites W2100945405 @default.
- W3003137894 cites W2117809914 @default.
- W3003137894 cites W2165562590 @default.
- W3003137894 cites W2171800554 @default.
- W3003137894 cites W2232335510 @default.
- W3003137894 cites W2398031399 @default.
- W3003137894 cites W2549840287 @default.
- W3003137894 cites W2555431798 @default.
- W3003137894 cites W2574679321 @default.
- W3003137894 cites W2594608321 @default.
- W3003137894 cites W2615509641 @default.
- W3003137894 cites W2736477498 @default.
- W3003137894 cites W2790761863 @default.
- W3003137894 cites W2792774844 @default.
- W3003137894 cites W2804457427 @default.
- W3003137894 cites W2823906716 @default.
- W3003137894 cites W2895397679 @default.
- W3003137894 cites W2900117237 @default.
- W3003137894 cites W2901042234 @default.
- W3003137894 cites W2903523109 @default.
- W3003137894 cites W2904557769 @default.
- W3003137894 cites W2918850337 @default.
- W3003137894 cites W2962842547 @default.
- W3003137894 cites W2970115434 @default.
- W3003137894 cites W2971224052 @default.
- W3003137894 doi "https://doi.org/10.1109/jestpe.2020.2968243" @default.
- W3003137894 hasPublicationYear "2021" @default.
- W3003137894 type Work @default.
- W3003137894 sameAs 3003137894 @default.
- W3003137894 citedByCount "98" @default.
- W3003137894 countsByYear W30031378942020 @default.
- W3003137894 countsByYear W30031378942021 @default.
- W3003137894 countsByYear W30031378942022 @default.
- W3003137894 countsByYear W30031378942023 @default.
- W3003137894 crossrefType "journal-article" @default.
- W3003137894 hasAuthorship W3003137894A5014968958 @default.
- W3003137894 hasAuthorship W3003137894A5036511652 @default.
- W3003137894 hasAuthorship W3003137894A5039395705 @default.
- W3003137894 hasAuthorship W3003137894A5078176748 @default.
- W3003137894 hasConcept C111919701 @default.
- W3003137894 hasConcept C119599485 @default.
- W3003137894 hasConcept C127413603 @default.
- W3003137894 hasConcept C154945302 @default.
- W3003137894 hasConcept C165801399 @default.
- W3003137894 hasConcept C179768478 @default.
- W3003137894 hasConcept C2775924081 @default.
- W3003137894 hasConcept C2776784348 @default.
- W3003137894 hasConcept C41008148 @default.
- W3003137894 hasConcept C42536954 @default.
- W3003137894 hasConcept C50644808 @default.
- W3003137894 hasConceptScore W3003137894C111919701 @default.
- W3003137894 hasConceptScore W3003137894C119599485 @default.
- W3003137894 hasConceptScore W3003137894C127413603 @default.
- W3003137894 hasConceptScore W3003137894C154945302 @default.
- W3003137894 hasConceptScore W3003137894C165801399 @default.
- W3003137894 hasConceptScore W3003137894C179768478 @default.
- W3003137894 hasConceptScore W3003137894C2775924081 @default.
- W3003137894 hasConceptScore W3003137894C2776784348 @default.
- W3003137894 hasConceptScore W3003137894C41008148 @default.
- W3003137894 hasConceptScore W3003137894C42536954 @default.
- W3003137894 hasConceptScore W3003137894C50644808 @default.
- W3003137894 hasIssue "5" @default.
- W3003137894 hasLocation W30031378941 @default.
- W3003137894 hasOpenAccess W3003137894 @default.
- W3003137894 hasPrimaryLocation W30031378941 @default.
- W3003137894 hasRelatedWork W1574359403 @default.
- W3003137894 hasRelatedWork W2057975886 @default.
- W3003137894 hasRelatedWork W2356033827 @default.
- W3003137894 hasRelatedWork W2391138633 @default.
- W3003137894 hasRelatedWork W2907234787 @default.
- W3003137894 hasRelatedWork W4206134051 @default.
- W3003137894 hasRelatedWork W4210780382 @default.
- W3003137894 hasRelatedWork W4285503559 @default.
- W3003137894 hasRelatedWork W4308700935 @default.
- W3003137894 hasRelatedWork W4383747562 @default.
- W3003137894 hasVolume "9" @default.
- W3003137894 isParatext "false" @default.
- W3003137894 isRetracted "false" @default.
- W3003137894 magId "3003137894" @default.