Matches in SemOpenAlex for { <https://semopenalex.org/work/W3003147780> ?p ?o ?g. }
- W3003147780 endingPage "458" @default.
- W3003147780 startingPage "447" @default.
- W3003147780 abstract "ConspectusHeterogeneous catalysis is at the heart of the chemical industry. Being able to tune and design efficient catalysts for processes of interest is of the utmost importance, and for this, a molecular-level understanding of heterogeneous catalysts is the first step and indeed a prime focus of modern catalysis research. For a long time, the single most thermodynamically stable structure of the catalytic interface attained under the reaction conditions had been envisioned as the reactive phase. However, some catalytic interfaces continue to undergo structural dynamics in the steady state, triggered by high temperatures and pressures and binding and changing reagents. Among particularly dynamic interfaces are such widely used catalysts as crystalline and amorphous surfaced supporting (sub)nanometallic clusters. Recently, it became clear that this dynamic fluxionality causes the supported clusters to populate many distinct structural and stoichiometric states under catalytic conditions. Hence, the catalytic interface should be viewed as an evolving statistical ensemble of many structures (rather than one structure). Every member in the ensemble contributes to the properties of the catalyst differently, in proportion to its probability of being populated. This new notion flips the established paradigm and calls for a new theory, new modeling approaches, operando measurements, and updated design strategies.The statistical ensemble nature of surface-supported subnanocluster catalysts can be exemplified by oxide-supported and adsorbate-covered Pt, Pd, Cu, and CuPd clusters, which are catalytic toward oxidative and nonoxidative dehydrogenation. They have access to a variety of 3D and quasi-2D shapes. The compositions of their thermal ensembles are dependent on the cluster size, leading to size-specific catalytic activities and the famous “every atom counts” phenomenon. The support and adsorbates affect catalyst structures, and the state of the reacting species causes the ensemble to change in every reaction intermediate. The most stable member of the ensemble dominates the thermodynamic properties of the corresponding intermediate, whereas the kinetics can be determined by more active but less populated metastable catalyst states, and that suggests that many earlier studies might have overlooked the actual active sites. Both effects depend on the relative time scales of catalyst restructuring and reaction dynamics. The catalyst may routinely operate off-equilibrium. Ensemble phenomena lead to surprising exceptions from established rules of catalysis, such as scaling relations and Arrhenius behavior. Catalyst deactivation is also an ensemble property, and its extent of mitigation can be predicted through the new paradigm. These findings were enabled by advances in theory, such as global optimization and subsequent utilization of multiple local minima and pathways sampling as well as operando catalyst characterization. The fact that the per-site and per-species resolution is needed for the description and prediction of catalyst properties gives theory the central role in catalysis research, as most experiments provide ensemble-average information and cannot detect the crucial minority species that may be responsible for the catalytic activity." @default.
- W3003147780 created "2020-01-30" @default.
- W3003147780 creator A5000151397 @default.
- W3003147780 creator A5004503548 @default.
- W3003147780 creator A5046097781 @default.
- W3003147780 date "2020-01-24" @default.
- W3003147780 modified "2023-10-14" @default.
- W3003147780 title "Ensembles of Metastable States Govern Heterogeneous Catalysis on Dynamic Interfaces" @default.
- W3003147780 cites W1954008368 @default.
- W3003147780 cites W1966439021 @default.
- W3003147780 cites W2000600362 @default.
- W3003147780 cites W2003163146 @default.
- W3003147780 cites W2003228510 @default.
- W3003147780 cites W2005060157 @default.
- W3003147780 cites W2006102096 @default.
- W3003147780 cites W2014449079 @default.
- W3003147780 cites W2044768445 @default.
- W3003147780 cites W2050873114 @default.
- W3003147780 cites W2059315794 @default.
- W3003147780 cites W2061693111 @default.
- W3003147780 cites W2063060768 @default.
- W3003147780 cites W2069371420 @default.
- W3003147780 cites W2071965345 @default.
- W3003147780 cites W2072246700 @default.
- W3003147780 cites W2094430532 @default.
- W3003147780 cites W2134568665 @default.
- W3003147780 cites W2167872912 @default.
- W3003147780 cites W2169033132 @default.
- W3003147780 cites W2212419932 @default.
- W3003147780 cites W2237846741 @default.
- W3003147780 cites W2255203817 @default.
- W3003147780 cites W2323927750 @default.
- W3003147780 cites W2503466308 @default.
- W3003147780 cites W2553894313 @default.
- W3003147780 cites W2557521583 @default.
- W3003147780 cites W2565539545 @default.
- W3003147780 cites W2580357902 @default.
- W3003147780 cites W2588974114 @default.
- W3003147780 cites W2597761442 @default.
- W3003147780 cites W2599369884 @default.
- W3003147780 cites W2602314065 @default.
- W3003147780 cites W2739565103 @default.
- W3003147780 cites W2754897746 @default.
- W3003147780 cites W2788158835 @default.
- W3003147780 cites W2789091386 @default.
- W3003147780 cites W2791612975 @default.
- W3003147780 cites W2793967927 @default.
- W3003147780 cites W2797764620 @default.
- W3003147780 cites W2809622699 @default.
- W3003147780 cites W2840782614 @default.
- W3003147780 cites W2883962994 @default.
- W3003147780 cites W2903674189 @default.
- W3003147780 cites W2905027843 @default.
- W3003147780 cites W2909016907 @default.
- W3003147780 cites W2921183777 @default.
- W3003147780 cites W2944750494 @default.
- W3003147780 cites W2948343443 @default.
- W3003147780 cites W2964774566 @default.
- W3003147780 cites W2981547460 @default.
- W3003147780 cites W2987283462 @default.
- W3003147780 cites W3102748172 @default.
- W3003147780 cites W3105621768 @default.
- W3003147780 cites W4212994234 @default.
- W3003147780 cites W4238959316 @default.
- W3003147780 cites W4300009811 @default.
- W3003147780 cites W821125593 @default.
- W3003147780 doi "https://doi.org/10.1021/acs.accounts.9b00531" @default.
- W3003147780 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/31977181" @default.
- W3003147780 hasPublicationYear "2020" @default.
- W3003147780 type Work @default.
- W3003147780 sameAs 3003147780 @default.
- W3003147780 citedByCount "119" @default.
- W3003147780 countsByYear W30031477802020 @default.
- W3003147780 countsByYear W30031477802021 @default.
- W3003147780 countsByYear W30031477802022 @default.
- W3003147780 countsByYear W30031477802023 @default.
- W3003147780 crossrefType "journal-article" @default.
- W3003147780 hasAuthorship W3003147780A5000151397 @default.
- W3003147780 hasAuthorship W3003147780A5004503548 @default.
- W3003147780 hasAuthorship W3003147780A5046097781 @default.
- W3003147780 hasBestOaLocation W30031477804 @default.
- W3003147780 hasConcept C119889771 @default.
- W3003147780 hasConcept C144082473 @default.
- W3003147780 hasConcept C147597530 @default.
- W3003147780 hasConcept C147789679 @default.
- W3003147780 hasConcept C159467904 @default.
- W3003147780 hasConcept C161790260 @default.
- W3003147780 hasConcept C171250308 @default.
- W3003147780 hasConcept C175583648 @default.
- W3003147780 hasConcept C178790620 @default.
- W3003147780 hasConcept C185592680 @default.
- W3003147780 hasConcept C192562407 @default.
- W3003147780 hasConcept C2779851234 @default.
- W3003147780 hasConcept C59593255 @default.
- W3003147780 hasConcept C89464430 @default.
- W3003147780 hasConceptScore W3003147780C119889771 @default.
- W3003147780 hasConceptScore W3003147780C144082473 @default.
- W3003147780 hasConceptScore W3003147780C147597530 @default.