Matches in SemOpenAlex for { <https://semopenalex.org/work/W3003160776> ?p ?o ?g. }
- W3003160776 endingPage "67" @default.
- W3003160776 startingPage "54" @default.
- W3003160776 abstract "Noise and high-dimension of process signals decrease effectiveness of those regular fault detection and diagnosis models in multivariate processes. Deep learning technique shows very excellent performance in high-level feature learning from image and visual data. However, the large labeled data are required for deep neural networks (DNNs) with supervised learning like convolutional neural network (CNN), which increases the time cost of model construction significantly. A new DNN model, one-dimensional convolutional auto-encoder (1D-CAE) is proposed for fault detection and diagnosis of multivariate processes in this paper. 1D-CAE is utilized to learn hierarchical feature representations through noise reduction of high-dimensional process signals. Auto-encoder integrated with convolutional kernels and pooling units allows feature extraction to be particularly effective, which is of great importance for fault detection and diagnosis in multivariate processes. The comparison between 1D-CAE and other typical DNNs illustrates effectiveness of 1D-CAE for fault detection and diagnosis on Tennessee Eastman Process and Fed-batch fermentation penicillin process. The proposed method provides an effective platform for deep-learning-based process fault detection and diagnosis of multivariate processes." @default.
- W3003160776 created "2020-02-07" @default.
- W3003160776 creator A5019373659 @default.
- W3003160776 creator A5041454124 @default.
- W3003160776 creator A5069365665 @default.
- W3003160776 date "2020-03-01" @default.
- W3003160776 modified "2023-10-16" @default.
- W3003160776 title "One-dimensional convolutional auto-encoder-based feature learning for fault diagnosis of multivariate processes" @default.
- W3003160776 cites W1675477313 @default.
- W3003160776 cites W1694307164 @default.
- W3003160776 cites W1965833531 @default.
- W3003160776 cites W1967106605 @default.
- W3003160776 cites W1974156558 @default.
- W3003160776 cites W1974717100 @default.
- W3003160776 cites W1978994389 @default.
- W3003160776 cites W1983364832 @default.
- W3003160776 cites W1988995139 @default.
- W3003160776 cites W1990283595 @default.
- W3003160776 cites W1991078647 @default.
- W3003160776 cites W1991519797 @default.
- W3003160776 cites W1996815993 @default.
- W3003160776 cites W2001619934 @default.
- W3003160776 cites W2002106843 @default.
- W3003160776 cites W2027515925 @default.
- W3003160776 cites W2029952239 @default.
- W3003160776 cites W2044799367 @default.
- W3003160776 cites W2059905643 @default.
- W3003160776 cites W2062332880 @default.
- W3003160776 cites W2063592879 @default.
- W3003160776 cites W2069068162 @default.
- W3003160776 cites W2072405524 @default.
- W3003160776 cites W2073476146 @default.
- W3003160776 cites W2100495367 @default.
- W3003160776 cites W2109548566 @default.
- W3003160776 cites W2121029939 @default.
- W3003160776 cites W2125568459 @default.
- W3003160776 cites W2126998396 @default.
- W3003160776 cites W2142389954 @default.
- W3003160776 cites W2142704389 @default.
- W3003160776 cites W2163922914 @default.
- W3003160776 cites W2273302224 @default.
- W3003160776 cites W2291961022 @default.
- W3003160776 cites W2316093926 @default.
- W3003160776 cites W2321627895 @default.
- W3003160776 cites W2323321467 @default.
- W3003160776 cites W2333255105 @default.
- W3003160776 cites W2442309921 @default.
- W3003160776 cites W2461729787 @default.
- W3003160776 cites W2500751094 @default.
- W3003160776 cites W2529897998 @default.
- W3003160776 cites W2556345765 @default.
- W3003160776 cites W2589171657 @default.
- W3003160776 cites W2616321591 @default.
- W3003160776 cites W2618995589 @default.
- W3003160776 cites W2746230914 @default.
- W3003160776 cites W2802326667 @default.
- W3003160776 cites W2897826427 @default.
- W3003160776 doi "https://doi.org/10.1016/j.jprocont.2020.01.004" @default.
- W3003160776 hasPublicationYear "2020" @default.
- W3003160776 type Work @default.
- W3003160776 sameAs 3003160776 @default.
- W3003160776 citedByCount "95" @default.
- W3003160776 countsByYear W30031607762020 @default.
- W3003160776 countsByYear W30031607762021 @default.
- W3003160776 countsByYear W30031607762022 @default.
- W3003160776 countsByYear W30031607762023 @default.
- W3003160776 crossrefType "journal-article" @default.
- W3003160776 hasAuthorship W3003160776A5019373659 @default.
- W3003160776 hasAuthorship W3003160776A5041454124 @default.
- W3003160776 hasAuthorship W3003160776A5069365665 @default.
- W3003160776 hasConcept C101738243 @default.
- W3003160776 hasConcept C108583219 @default.
- W3003160776 hasConcept C111919701 @default.
- W3003160776 hasConcept C118505674 @default.
- W3003160776 hasConcept C119857082 @default.
- W3003160776 hasConcept C127313418 @default.
- W3003160776 hasConcept C138885662 @default.
- W3003160776 hasConcept C152745839 @default.
- W3003160776 hasConcept C153180895 @default.
- W3003160776 hasConcept C154945302 @default.
- W3003160776 hasConcept C161584116 @default.
- W3003160776 hasConcept C165205528 @default.
- W3003160776 hasConcept C172707124 @default.
- W3003160776 hasConcept C175551986 @default.
- W3003160776 hasConcept C2776401178 @default.
- W3003160776 hasConcept C41008148 @default.
- W3003160776 hasConcept C41895202 @default.
- W3003160776 hasConcept C52622490 @default.
- W3003160776 hasConcept C59404180 @default.
- W3003160776 hasConcept C70437156 @default.
- W3003160776 hasConcept C81363708 @default.
- W3003160776 hasConcept C98045186 @default.
- W3003160776 hasConceptScore W3003160776C101738243 @default.
- W3003160776 hasConceptScore W3003160776C108583219 @default.
- W3003160776 hasConceptScore W3003160776C111919701 @default.
- W3003160776 hasConceptScore W3003160776C118505674 @default.
- W3003160776 hasConceptScore W3003160776C119857082 @default.
- W3003160776 hasConceptScore W3003160776C127313418 @default.