Matches in SemOpenAlex for { <https://semopenalex.org/work/W3003228500> ?p ?o ?g. }
- W3003228500 abstract "Abstract. Organic aerosol constitutes a major fraction of the global aerosol burden and is predominantly formed as secondary organic aerosol (SOA). Environmental chambers have been used extensively to study aerosol formation and evolution under controlled conditions similar to the atmosphere, but quantitative prediction of the outcome of these experiments is generally not achieved, which signifies our lack in understanding of these results and limits their portability to large scale models. In general, kinetic models employing state-of-the-art explicit chemical mechanisms fail to describe the mass concentration and composition of SOA obtained from chamber experiments. Specifically, chemical reactions involving nitrate radical (NO3) oxidation of volatile organic compounds (VOCs) are a source of major uncertainty for assessing the chemical and physical properties of oxidation products. Here, we introduce a kinetic model that treats gas-phase chemistry, gas-particle partitioning, particle-phase oligomerization, and chamber wall loss and use it to describe the oxidation of the monoterpenes α-pinene and limonene with NO3. The model can reproduce aerosol mass and nitration degrees in experiments using either pure precursors or their mixtures and infers volatility distributions of products, branching ratios of reactive intermediates as well as particle-phase reaction rates. The gas-phase chemistry in the model is based on the Master Chemical Mechanism (MCM), but trades speciation of single compounds for the overall ability of quantitatively describing SOA formation by using a lumped chemical mechanism. The complex branching into a multitude of individual products in MCM is replaced in this model with product volatility distributions, detailed peroxy (RO2) and alkoxy (RO) radical chemistry and amended by a particle-phase oligomerization scheme. The kinetic parameters obtained in this study are constrained by a set of SOA formation and evaporation experiments conducted in the Georgia Tech Environmental Chamber (GTEC) facility. For both precursors, we present volatility distributions of nitrated and non-nitrated reaction products that are obtained by fitting the kinetic model systematically to the experimental data using a global optimization method, the Monte Carlo Genetic Algorithm (MCGA). The results presented here provide new mechanistic insight into the processes leading to formation and evaporation of SOA. Most notably, much of the non-linear behavior of precursor mixtures can be understood by RO2 fate and reversible oligomerization reactions in the particle phase, but some effects could be accredited to kinetic limitations of mass transport in the particle phase. The methodologies described in this work provide a basis for quantitative analysis of multi-source data from environmental chamber experiments with manageable computational effort." @default.
- W3003228500 created "2020-02-07" @default.
- W3003228500 creator A5006645894 @default.
- W3003228500 creator A5041401665 @default.
- W3003228500 creator A5047550036 @default.
- W3003228500 creator A5051323324 @default.
- W3003228500 date "2020-01-27" @default.
- W3003228500 modified "2023-09-29" @default.
- W3003228500 title "Kinetic modelling of formation and evaporation of SOA from NO<sub>3</sub> oxidation of pure and mixed monoterpenes" @default.
- W3003228500 cites W1968862760 @default.
- W3003228500 cites W1979434187 @default.
- W3003228500 cites W2001219782 @default.
- W3003228500 cites W2010619046 @default.
- W3003228500 cites W2021198116 @default.
- W3003228500 cites W2030765885 @default.
- W3003228500 cites W2035014908 @default.
- W3003228500 cites W2041564799 @default.
- W3003228500 cites W2046884997 @default.
- W3003228500 cites W2051817856 @default.
- W3003228500 cites W2052748907 @default.
- W3003228500 cites W2057152777 @default.
- W3003228500 cites W2072692927 @default.
- W3003228500 cites W2078331915 @default.
- W3003228500 cites W2078555613 @default.
- W3003228500 cites W2091634646 @default.
- W3003228500 cites W2103798157 @default.
- W3003228500 cites W2112923815 @default.
- W3003228500 cites W2116507044 @default.
- W3003228500 cites W2118773370 @default.
- W3003228500 cites W2124610638 @default.
- W3003228500 cites W2124940069 @default.
- W3003228500 cites W2127510753 @default.
- W3003228500 cites W2128586429 @default.
- W3003228500 cites W2130975189 @default.
- W3003228500 cites W2134755394 @default.
- W3003228500 cites W2137994304 @default.
- W3003228500 cites W2140137657 @default.
- W3003228500 cites W2150956567 @default.
- W3003228500 cites W2160803316 @default.
- W3003228500 cites W2316794529 @default.
- W3003228500 cites W2405270443 @default.
- W3003228500 cites W2511217667 @default.
- W3003228500 cites W2592219204 @default.
- W3003228500 cites W2733754042 @default.
- W3003228500 cites W2773310264 @default.
- W3003228500 cites W2774523332 @default.
- W3003228500 cites W2791199277 @default.
- W3003228500 cites W2920244130 @default.
- W3003228500 cites W2968831009 @default.
- W3003228500 cites W2969075957 @default.
- W3003228500 doi "https://doi.org/10.5194/acp-2020-55" @default.
- W3003228500 hasPublicationYear "2020" @default.
- W3003228500 type Work @default.
- W3003228500 sameAs 3003228500 @default.
- W3003228500 citedByCount "0" @default.
- W3003228500 crossrefType "posted-content" @default.
- W3003228500 hasAuthorship W3003228500A5006645894 @default.
- W3003228500 hasAuthorship W3003228500A5041401665 @default.
- W3003228500 hasAuthorship W3003228500A5047550036 @default.
- W3003228500 hasAuthorship W3003228500A5051323324 @default.
- W3003228500 hasBestOaLocation W30032285002 @default.
- W3003228500 hasConcept C106159729 @default.
- W3003228500 hasConcept C107872376 @default.
- W3003228500 hasConcept C111368507 @default.
- W3003228500 hasConcept C127313418 @default.
- W3003228500 hasConcept C139066938 @default.
- W3003228500 hasConcept C147789679 @default.
- W3003228500 hasConcept C161790260 @default.
- W3003228500 hasConcept C162324750 @default.
- W3003228500 hasConcept C177801218 @default.
- W3003228500 hasConcept C178790620 @default.
- W3003228500 hasConcept C185592680 @default.
- W3003228500 hasConcept C206175624 @default.
- W3003228500 hasConcept C2776134268 @default.
- W3003228500 hasConcept C2777278459 @default.
- W3003228500 hasConcept C2778517922 @default.
- W3003228500 hasConcept C2778971816 @default.
- W3003228500 hasConcept C2779173278 @default.
- W3003228500 hasConcept C2779345167 @default.
- W3003228500 hasConcept C43617362 @default.
- W3003228500 hasConcept C65024703 @default.
- W3003228500 hasConcept C91602232 @default.
- W3003228500 hasConceptScore W3003228500C106159729 @default.
- W3003228500 hasConceptScore W3003228500C107872376 @default.
- W3003228500 hasConceptScore W3003228500C111368507 @default.
- W3003228500 hasConceptScore W3003228500C127313418 @default.
- W3003228500 hasConceptScore W3003228500C139066938 @default.
- W3003228500 hasConceptScore W3003228500C147789679 @default.
- W3003228500 hasConceptScore W3003228500C161790260 @default.
- W3003228500 hasConceptScore W3003228500C162324750 @default.
- W3003228500 hasConceptScore W3003228500C177801218 @default.
- W3003228500 hasConceptScore W3003228500C178790620 @default.
- W3003228500 hasConceptScore W3003228500C185592680 @default.
- W3003228500 hasConceptScore W3003228500C206175624 @default.
- W3003228500 hasConceptScore W3003228500C2776134268 @default.
- W3003228500 hasConceptScore W3003228500C2777278459 @default.
- W3003228500 hasConceptScore W3003228500C2778517922 @default.
- W3003228500 hasConceptScore W3003228500C2778971816 @default.
- W3003228500 hasConceptScore W3003228500C2779173278 @default.
- W3003228500 hasConceptScore W3003228500C2779345167 @default.