Matches in SemOpenAlex for { <https://semopenalex.org/work/W3003229963> ?p ?o ?g. }
- W3003229963 endingPage "21051" @default.
- W3003229963 startingPage "21036" @default.
- W3003229963 abstract "In this paper, automatic extraction of multi-context and multi-scale land use/land cover vegetation from high-resolution remote sensing images is tackled, aiming to solve typical challenges in classifying remote sensing images at a pixel level. To solve small inter-class differences and large intra-class differences between the vegetation and background, we introduce a vegetation-feature-sensitive focus perception (FP) module. Considering the intrinsic properties of vegetation objects, we established an adaptive context inference (ACI) model under a supervised setting that includes a context model to represent relationships between a center pixel and its neighbors under semantic constraints, as well as the spatial structures of vegetation features. Comparative experiments on the ZY-3 and Gaofen Image Dataset (GID) datasets demonstrate the effectiveness of our proposed automatic vegetation extraction model against the baseline Deeplab v3+ model. Taking precision, kappa coefficient, mean intersection over union (miou), precision rate, and F1-score as the evaluation indexes, the results showed an improvement in the precision by at least 1.44% and miou by 2.47%, over the baseline Deeplab v3+ model. In addition, the ACI module improved the precision and miou by 2% and 3.88%, and the FP module improved the precision and miou by 1.13% and 1.65%. These results and statistics of these comprehensive experiments illustrated that our adaptive and effective vegetation extraction model could satisfy different requirements of land use/land cover mapping applications." @default.
- W3003229963 created "2020-02-07" @default.
- W3003229963 creator A5006799945 @default.
- W3003229963 creator A5021133985 @default.
- W3003229963 creator A5027395360 @default.
- W3003229963 creator A5028479663 @default.
- W3003229963 creator A5042742627 @default.
- W3003229963 creator A5073051182 @default.
- W3003229963 date "2020-01-01" @default.
- W3003229963 modified "2023-10-18" @default.
- W3003229963 title "Vegetation Land Use/Land Cover Extraction From High-Resolution Satellite Images Based on Adaptive Context Inference" @default.
- W3003229963 cites W1601387247 @default.
- W3003229963 cites W1745334888 @default.
- W3003229963 cites W1813204202 @default.
- W3003229963 cites W1843514792 @default.
- W3003229963 cites W1903029394 @default.
- W3003229963 cites W1936676 @default.
- W3003229963 cites W1974524700 @default.
- W3003229963 cites W2006588449 @default.
- W3003229963 cites W2007435888 @default.
- W3003229963 cites W2028909824 @default.
- W3003229963 cites W2028934227 @default.
- W3003229963 cites W2038782607 @default.
- W3003229963 cites W2044558111 @default.
- W3003229963 cites W2061674742 @default.
- W3003229963 cites W2074464158 @default.
- W3003229963 cites W2079745808 @default.
- W3003229963 cites W2102673432 @default.
- W3003229963 cites W2103818806 @default.
- W3003229963 cites W2111670801 @default.
- W3003229963 cites W2124592697 @default.
- W3003229963 cites W2148878936 @default.
- W3003229963 cites W2149980531 @default.
- W3003229963 cites W2153538582 @default.
- W3003229963 cites W2157559031 @default.
- W3003229963 cites W2157927590 @default.
- W3003229963 cites W2170607218 @default.
- W3003229963 cites W2170797800 @default.
- W3003229963 cites W2194775991 @default.
- W3003229963 cites W2267317359 @default.
- W3003229963 cites W2412782625 @default.
- W3003229963 cites W2560023338 @default.
- W3003229963 cites W2592939477 @default.
- W3003229963 cites W2604086375 @default.
- W3003229963 cites W2609402060 @default.
- W3003229963 cites W2616727008 @default.
- W3003229963 cites W2648242067 @default.
- W3003229963 cites W2737312250 @default.
- W3003229963 cites W2752782242 @default.
- W3003229963 cites W2782522152 @default.
- W3003229963 cites W2794948653 @default.
- W3003229963 cites W2888340395 @default.
- W3003229963 cites W2899257507 @default.
- W3003229963 cites W2900570535 @default.
- W3003229963 cites W2900680440 @default.
- W3003229963 cites W2903282641 @default.
- W3003229963 cites W2906341063 @default.
- W3003229963 cites W2955058313 @default.
- W3003229963 cites W2957122950 @default.
- W3003229963 cites W2962850830 @default.
- W3003229963 cites W2963091558 @default.
- W3003229963 cites W2963108253 @default.
- W3003229963 cites W2963293390 @default.
- W3003229963 cites W2963378109 @default.
- W3003229963 cites W2963727650 @default.
- W3003229963 cites W2964309882 @default.
- W3003229963 cites W2965608468 @default.
- W3003229963 cites W2972081044 @default.
- W3003229963 cites W2972623730 @default.
- W3003229963 cites W3105127913 @default.
- W3003229963 cites W4288076010 @default.
- W3003229963 cites W4376849407 @default.
- W3003229963 doi "https://doi.org/10.1109/access.2020.2969812" @default.
- W3003229963 hasPublicationYear "2020" @default.
- W3003229963 type Work @default.
- W3003229963 sameAs 3003229963 @default.
- W3003229963 citedByCount "14" @default.
- W3003229963 countsByYear W30032299632020 @default.
- W3003229963 countsByYear W30032299632021 @default.
- W3003229963 countsByYear W30032299632022 @default.
- W3003229963 countsByYear W30032299632023 @default.
- W3003229963 crossrefType "journal-article" @default.
- W3003229963 hasAuthorship W3003229963A5006799945 @default.
- W3003229963 hasAuthorship W3003229963A5021133985 @default.
- W3003229963 hasAuthorship W3003229963A5027395360 @default.
- W3003229963 hasAuthorship W3003229963A5028479663 @default.
- W3003229963 hasAuthorship W3003229963A5042742627 @default.
- W3003229963 hasAuthorship W3003229963A5073051182 @default.
- W3003229963 hasBestOaLocation W30032299631 @default.
- W3003229963 hasConcept C124101348 @default.
- W3003229963 hasConcept C142724271 @default.
- W3003229963 hasConcept C153180895 @default.
- W3003229963 hasConcept C154945302 @default.
- W3003229963 hasConcept C160633673 @default.
- W3003229963 hasConcept C166957645 @default.
- W3003229963 hasConcept C18903297 @default.
- W3003229963 hasConcept C205649164 @default.
- W3003229963 hasConcept C2776054349 @default.