Matches in SemOpenAlex for { <https://semopenalex.org/work/W3003262140> ?p ?o ?g. }
- W3003262140 endingPage "2506" @default.
- W3003262140 startingPage "2493" @default.
- W3003262140 abstract "Clustered and multivariate survival times, such as times to recurrent events, commonly arise in biomedical and health research, and marginal survival models are often used to model such data. When a large number of predictors are available, variable selection is always an important issue when modeling such data with a survival model. We consider a Cox’s proportional hazards model for a marginal survival model. Under the sparsity assumption, we propose a penalized generalized estimating equation approach to select important variables and to estimate regression coefficients simultaneously in the marginal model. The proposed method explicitly models the correlation structure within clusters or correlated variables by using a prespecified working correlation matrix. The asymptotic properties of the estimators from the penalized generalized estimating equations are established and the number of candidate covariates is allowed to increase in the same order as the number of clusters does. We evaluate the performance of the proposed method through a simulation study and analyze two real datasets for the application." @default.
- W3003262140 created "2020-02-07" @default.
- W3003262140 creator A5006543483 @default.
- W3003262140 creator A5038151589 @default.
- W3003262140 creator A5073771690 @default.
- W3003262140 creator A5075630748 @default.
- W3003262140 date "2020-01-29" @default.
- W3003262140 modified "2023-10-03" @default.
- W3003262140 title "Variable selection via penalized generalized estimating equations for a marginal survival model" @default.
- W3003262140 cites W1593493925 @default.
- W3003262140 cites W1598614474 @default.
- W3003262140 cites W1966714873 @default.
- W3003262140 cites W1986705681 @default.
- W3003262140 cites W1992277956 @default.
- W3003262140 cites W2000864749 @default.
- W3003262140 cites W2013885224 @default.
- W3003262140 cites W2015279504 @default.
- W3003262140 cites W2018502278 @default.
- W3003262140 cites W2044029817 @default.
- W3003262140 cites W2044436775 @default.
- W3003262140 cites W2046061126 @default.
- W3003262140 cites W2049364631 @default.
- W3003262140 cites W2054358221 @default.
- W3003262140 cites W2054957279 @default.
- W3003262140 cites W2063978378 @default.
- W3003262140 cites W2072823693 @default.
- W3003262140 cites W2074682976 @default.
- W3003262140 cites W2086205459 @default.
- W3003262140 cites W2106161928 @default.
- W3003262140 cites W2109395830 @default.
- W3003262140 cites W2110776215 @default.
- W3003262140 cites W2115190665 @default.
- W3003262140 cites W2115661490 @default.
- W3003262140 cites W2119862467 @default.
- W3003262140 cites W2129934724 @default.
- W3003262140 cites W2129984443 @default.
- W3003262140 cites W2146888763 @default.
- W3003262140 cites W2148487094 @default.
- W3003262140 cites W2149199519 @default.
- W3003262140 cites W2149860264 @default.
- W3003262140 cites W2158497151 @default.
- W3003262140 cites W2977606681 @default.
- W3003262140 cites W3101767848 @default.
- W3003262140 cites W3103804923 @default.
- W3003262140 cites W3147894994 @default.
- W3003262140 doi "https://doi.org/10.1177/0962280220901728" @default.
- W3003262140 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/31994449" @default.
- W3003262140 hasPublicationYear "2020" @default.
- W3003262140 type Work @default.
- W3003262140 sameAs 3003262140 @default.
- W3003262140 citedByCount "3" @default.
- W3003262140 countsByYear W30032621402021 @default.
- W3003262140 countsByYear W30032621402022 @default.
- W3003262140 countsByYear W30032621402023 @default.
- W3003262140 crossrefType "journal-article" @default.
- W3003262140 hasAuthorship W3003262140A5006543483 @default.
- W3003262140 hasAuthorship W3003262140A5038151589 @default.
- W3003262140 hasAuthorship W3003262140A5073771690 @default.
- W3003262140 hasAuthorship W3003262140A5075630748 @default.
- W3003262140 hasConcept C105795698 @default.
- W3003262140 hasConcept C119043178 @default.
- W3003262140 hasConcept C134306372 @default.
- W3003262140 hasConcept C148483581 @default.
- W3003262140 hasConcept C149782125 @default.
- W3003262140 hasConcept C152877465 @default.
- W3003262140 hasConcept C154945302 @default.
- W3003262140 hasConcept C161584116 @default.
- W3003262140 hasConcept C182365436 @default.
- W3003262140 hasConcept C185429906 @default.
- W3003262140 hasConcept C197656967 @default.
- W3003262140 hasConcept C204016326 @default.
- W3003262140 hasConcept C27403532 @default.
- W3003262140 hasConcept C28826006 @default.
- W3003262140 hasConcept C33923547 @default.
- W3003262140 hasConcept C41008148 @default.
- W3003262140 hasConcept C41587187 @default.
- W3003262140 hasConcept C50382708 @default.
- W3003262140 hasConcept C81917197 @default.
- W3003262140 hasConcept C93959086 @default.
- W3003262140 hasConceptScore W3003262140C105795698 @default.
- W3003262140 hasConceptScore W3003262140C119043178 @default.
- W3003262140 hasConceptScore W3003262140C134306372 @default.
- W3003262140 hasConceptScore W3003262140C148483581 @default.
- W3003262140 hasConceptScore W3003262140C149782125 @default.
- W3003262140 hasConceptScore W3003262140C152877465 @default.
- W3003262140 hasConceptScore W3003262140C154945302 @default.
- W3003262140 hasConceptScore W3003262140C161584116 @default.
- W3003262140 hasConceptScore W3003262140C182365436 @default.
- W3003262140 hasConceptScore W3003262140C185429906 @default.
- W3003262140 hasConceptScore W3003262140C197656967 @default.
- W3003262140 hasConceptScore W3003262140C204016326 @default.
- W3003262140 hasConceptScore W3003262140C27403532 @default.
- W3003262140 hasConceptScore W3003262140C28826006 @default.
- W3003262140 hasConceptScore W3003262140C33923547 @default.
- W3003262140 hasConceptScore W3003262140C41008148 @default.
- W3003262140 hasConceptScore W3003262140C41587187 @default.
- W3003262140 hasConceptScore W3003262140C50382708 @default.
- W3003262140 hasConceptScore W3003262140C81917197 @default.