Matches in SemOpenAlex for { <https://semopenalex.org/work/W3003304577> ?p ?o ?g. }
Showing items 1 to 73 of
73
with 100 items per page.
- W3003304577 abstract "The application of machine learning models for optimization and improved decision-making has great potential in the drilling industry. This paper demonstrates a model for predicting fuel consumption on a Mobile Offshore Drilling Unit (MODU) with a Multi-layer Perceptron (MLP) artificial neural network. The model is proposed as a tool for setting fuel consumption related performance goals for offshore personnel on a MODU. Operational and environmental data have been used as input variables for the model, with a dataset split into 80% training set and 20% test set. The highest performance is obtained with three hidden layers with 38 nodes each. The Adam solver performs better than the Stochastic Gradient Descent (SGD) solver for weight optimization, and the best $alpha$ parameter for the L2 regularization term is 0.0001 with the Adam solver. The MLP regression model predicts fuel consumption for the test set with a Root Mean Squared Error (RMSE) of 0.0770. This result indicates that artificial neural networks and the MLP regressor is a suitable algorithm for predictive modelling of fuel consumption on a MODU." @default.
- W3003304577 created "2020-02-07" @default.
- W3003304577 creator A5037071319 @default.
- W3003304577 creator A5080165402 @default.
- W3003304577 date "2019-12-01" @default.
- W3003304577 modified "2023-09-26" @default.
- W3003304577 title "Machine Learning Based Approach to Predict Short-Term Fuel Consumption on Mobile Offshore Drilling Units" @default.
- W3003304577 cites W1980579107 @default.
- W3003304577 cites W1986880669 @default.
- W3003304577 cites W2041194385 @default.
- W3003304577 cites W2345702385 @default.
- W3003304577 cites W2370719594 @default.
- W3003304577 cites W2737065932 @default.
- W3003304577 cites W2807877445 @default.
- W3003304577 cites W2963981452 @default.
- W3003304577 cites W3003304577 @default.
- W3003304577 doi "https://doi.org/10.1109/ieem44572.2019.8978605" @default.
- W3003304577 hasPublicationYear "2019" @default.
- W3003304577 type Work @default.
- W3003304577 sameAs 3003304577 @default.
- W3003304577 citedByCount "2" @default.
- W3003304577 countsByYear W30033045772019 @default.
- W3003304577 countsByYear W30033045772022 @default.
- W3003304577 crossrefType "proceedings-article" @default.
- W3003304577 hasAuthorship W3003304577A5037071319 @default.
- W3003304577 hasAuthorship W3003304577A5080165402 @default.
- W3003304577 hasConcept C111368507 @default.
- W3003304577 hasConcept C121332964 @default.
- W3003304577 hasConcept C127313418 @default.
- W3003304577 hasConcept C127413603 @default.
- W3003304577 hasConcept C144024400 @default.
- W3003304577 hasConcept C162284963 @default.
- W3003304577 hasConcept C25197100 @default.
- W3003304577 hasConcept C2781143826 @default.
- W3003304577 hasConcept C30772137 @default.
- W3003304577 hasConcept C36289849 @default.
- W3003304577 hasConcept C41008148 @default.
- W3003304577 hasConcept C61797465 @default.
- W3003304577 hasConcept C62520636 @default.
- W3003304577 hasConcept C78519656 @default.
- W3003304577 hasConcept C78762247 @default.
- W3003304577 hasConceptScore W3003304577C111368507 @default.
- W3003304577 hasConceptScore W3003304577C121332964 @default.
- W3003304577 hasConceptScore W3003304577C127313418 @default.
- W3003304577 hasConceptScore W3003304577C127413603 @default.
- W3003304577 hasConceptScore W3003304577C144024400 @default.
- W3003304577 hasConceptScore W3003304577C162284963 @default.
- W3003304577 hasConceptScore W3003304577C25197100 @default.
- W3003304577 hasConceptScore W3003304577C2781143826 @default.
- W3003304577 hasConceptScore W3003304577C30772137 @default.
- W3003304577 hasConceptScore W3003304577C36289849 @default.
- W3003304577 hasConceptScore W3003304577C41008148 @default.
- W3003304577 hasConceptScore W3003304577C61797465 @default.
- W3003304577 hasConceptScore W3003304577C62520636 @default.
- W3003304577 hasConceptScore W3003304577C78519656 @default.
- W3003304577 hasConceptScore W3003304577C78762247 @default.
- W3003304577 hasLocation W30033045771 @default.
- W3003304577 hasOpenAccess W3003304577 @default.
- W3003304577 hasPrimaryLocation W30033045771 @default.
- W3003304577 hasRelatedWork W2051184613 @default.
- W3003304577 hasRelatedWork W2263122631 @default.
- W3003304577 hasRelatedWork W2326864459 @default.
- W3003304577 hasRelatedWork W2382598206 @default.
- W3003304577 hasRelatedWork W2389151734 @default.
- W3003304577 hasRelatedWork W3040005178 @default.
- W3003304577 hasRelatedWork W3089908970 @default.
- W3003304577 hasRelatedWork W3138894287 @default.
- W3003304577 hasRelatedWork W4253312472 @default.
- W3003304577 hasRelatedWork W5862076 @default.
- W3003304577 isParatext "false" @default.
- W3003304577 isRetracted "false" @default.
- W3003304577 magId "3003304577" @default.
- W3003304577 workType "article" @default.