Matches in SemOpenAlex for { <https://semopenalex.org/work/W3003362203> ?p ?o ?g. }
Showing items 1 to 93 of
93
with 100 items per page.
- W3003362203 endingPage "103057" @default.
- W3003362203 startingPage "103057" @default.
- W3003362203 abstract "Indoor navigation networks are the foundation of indoor localization-based services. To build navigation graph networks of buildings, the medial axis is an effective way to represent the paths of indoor spaces, as medial axis-based navigation networks are consistent with common human cognition of paths and satisfy the requirements of spatial queries in most indoor map-matching algorithms. The existing methods for generating medial axis-based indoor navigation networks compute the modified medial axis of indoor spaces to represent indoor paths. However, these methods cannot deal with rooms with irregular shapes or generate detours. Especially, these methods fail to generate path lines to represent floor-to-floor paths accurately. To address these issues, this study develops a novel approach called an improved generation of straight skeletons-based navigation networks (I-GSSNN) to produce straight skeletons based indoor navigation graph networks. The straight skeleton is adopted in I-GSSNN to catch the medial axis of indoor spaces. The Industry Foundation Classes (IFC) model, a widely-used format of Building Information Modeling (BIM), is used as input in the I-GSSNN. The I-GSSNN is a workflow that includes constructing path lines of corridors, connecting doors to corridors, generating floor-to-floor path lines, and removing redundant lines. Compared with existing methods, the I-GSSNN can handle rooms with any polygon shape and produces fewer detours. Novel algorithms are developed in the I-GSSNN to generate path lines for accurately representing stairs and elevators. An educational building is used as a case study to validate the result of I-GSSNN. The case study indicates that the I-GSSNN can generate a complete three-dimensional (3D) navigation network of the educational building. In addition, the accuracy test shows that the route length based on the generated navigation networks is very close to the real length. Significantly, the results show that the I-GSSNN can accurately generate full 3D navigation graph networks of buildings that can serve as indoor maps for indoor route planning and navigation and can also be used in code checking and pedestrian circulation analysis during building design." @default.
- W3003362203 created "2020-02-07" @default.
- W3003362203 creator A5030128184 @default.
- W3003362203 creator A5039850123 @default.
- W3003362203 creator A5052111586 @default.
- W3003362203 creator A5081675173 @default.
- W3003362203 date "2020-04-01" @default.
- W3003362203 modified "2023-10-12" @default.
- W3003362203 title "Generating straight skeleton-based navigation networks with Industry Foundation Classes for indoor way-finding" @default.
- W3003362203 cites W1134318187 @default.
- W3003362203 cites W1681778506 @default.
- W3003362203 cites W1922181341 @default.
- W3003362203 cites W1972383467 @default.
- W3003362203 cites W1973972388 @default.
- W3003362203 cites W1977276706 @default.
- W3003362203 cites W1993391455 @default.
- W3003362203 cites W2011185265 @default.
- W3003362203 cites W2021300295 @default.
- W3003362203 cites W2035722376 @default.
- W3003362203 cites W2054783617 @default.
- W3003362203 cites W2076795475 @default.
- W3003362203 cites W2092507038 @default.
- W3003362203 cites W2102242218 @default.
- W3003362203 cites W2116472185 @default.
- W3003362203 cites W2395497819 @default.
- W3003362203 cites W2883028320 @default.
- W3003362203 cites W3126317422 @default.
- W3003362203 cites W3139310354 @default.
- W3003362203 cites W2963298460 @default.
- W3003362203 doi "https://doi.org/10.1016/j.autcon.2019.103057" @default.
- W3003362203 hasPublicationYear "2020" @default.
- W3003362203 type Work @default.
- W3003362203 sameAs 3003362203 @default.
- W3003362203 citedByCount "22" @default.
- W3003362203 countsByYear W30033622032020 @default.
- W3003362203 countsByYear W30033622032021 @default.
- W3003362203 countsByYear W30033622032022 @default.
- W3003362203 countsByYear W30033622032023 @default.
- W3003362203 crossrefType "journal-article" @default.
- W3003362203 hasAuthorship W3003362203A5030128184 @default.
- W3003362203 hasAuthorship W3003362203A5039850123 @default.
- W3003362203 hasAuthorship W3003362203A5052111586 @default.
- W3003362203 hasAuthorship W3003362203A5081675173 @default.
- W3003362203 hasConcept C111919701 @default.
- W3003362203 hasConcept C125209513 @default.
- W3003362203 hasConcept C126042441 @default.
- W3003362203 hasConcept C127413603 @default.
- W3003362203 hasConcept C147176958 @default.
- W3003362203 hasConcept C154945302 @default.
- W3003362203 hasConcept C190694206 @default.
- W3003362203 hasConcept C199639397 @default.
- W3003362203 hasConcept C2777295749 @default.
- W3003362203 hasConcept C2777735758 @default.
- W3003362203 hasConcept C31258907 @default.
- W3003362203 hasConcept C31972630 @default.
- W3003362203 hasConcept C41008148 @default.
- W3003362203 hasConcept C61056293 @default.
- W3003362203 hasConcept C76155785 @default.
- W3003362203 hasConceptScore W3003362203C111919701 @default.
- W3003362203 hasConceptScore W3003362203C125209513 @default.
- W3003362203 hasConceptScore W3003362203C126042441 @default.
- W3003362203 hasConceptScore W3003362203C127413603 @default.
- W3003362203 hasConceptScore W3003362203C147176958 @default.
- W3003362203 hasConceptScore W3003362203C154945302 @default.
- W3003362203 hasConceptScore W3003362203C190694206 @default.
- W3003362203 hasConceptScore W3003362203C199639397 @default.
- W3003362203 hasConceptScore W3003362203C2777295749 @default.
- W3003362203 hasConceptScore W3003362203C2777735758 @default.
- W3003362203 hasConceptScore W3003362203C31258907 @default.
- W3003362203 hasConceptScore W3003362203C31972630 @default.
- W3003362203 hasConceptScore W3003362203C41008148 @default.
- W3003362203 hasConceptScore W3003362203C61056293 @default.
- W3003362203 hasConceptScore W3003362203C76155785 @default.
- W3003362203 hasLocation W30033622031 @default.
- W3003362203 hasOpenAccess W3003362203 @default.
- W3003362203 hasPrimaryLocation W30033622031 @default.
- W3003362203 hasRelatedWork W2249387638 @default.
- W3003362203 hasRelatedWork W2487015275 @default.
- W3003362203 hasRelatedWork W2921160740 @default.
- W3003362203 hasRelatedWork W2955143110 @default.
- W3003362203 hasRelatedWork W3157298243 @default.
- W3003362203 hasRelatedWork W3198341763 @default.
- W3003362203 hasRelatedWork W4205689792 @default.
- W3003362203 hasRelatedWork W4236437390 @default.
- W3003362203 hasRelatedWork W4238082242 @default.
- W3003362203 hasRelatedWork W630511090 @default.
- W3003362203 hasVolume "112" @default.
- W3003362203 isParatext "false" @default.
- W3003362203 isRetracted "false" @default.
- W3003362203 magId "3003362203" @default.
- W3003362203 workType "article" @default.