Matches in SemOpenAlex for { <https://semopenalex.org/work/W3003375462> ?p ?o ?g. }
- W3003375462 endingPage "300" @default.
- W3003375462 startingPage "281" @default.
- W3003375462 abstract "The use of blasting cost (BC) prediction to achieve optimal fragmentation is necessary in order to control the adverse consequences of blasting such as fly rock, ground vibration, and air blast in open-pit mines. In this research work, BC is predicted through collecting 146 blasting data from six limestone mines in Iran using the artificial neural networks (ANNs), gene expression programming (GEP), linear multivariate regression (LMR), and non-linear multivariate regression (NLMR) models. In all models, the ANFO value, number of detonators, Emolite value, hole number, hole length, hole diameter, burden, spacing, stemming, sub-drilling, specific gravity of rock, hardness, and uniaxial compressive strength are used as the input parameters. The ANN model results in the test stage indicating a higher correlation coefficient (0.954) and a lower root mean square error (973) compared to the other models. In addition, it has a better conformity with the real blasting costs in comparison with the other models. Although the ANNs method is regarded as one of the intelligent and powerful techniques in parameter prediction, its most important fault is its inability to provide mathematical equations for engineering operations. In contrast, the GEP model exhibits a reliable output by presenting a mathematical equation for BC prediction with a correlation coefficient of 0.933 and a root mean square error of 1088. Based on the sensitivity analysis, the spacing and ANFO values have the maximum and minimum effects on the BC function, respectively. The number of detonators, Emolite value, hole number, specific gravity, hardness, and rock uniaxial compressive strength have a positive correlation with BC, while the ANFO value, hole length, hole diameter, burden, spacing, stemming, and sub-drilling have a negative correlation with BC." @default.
- W3003375462 created "2020-02-07" @default.
- W3003375462 creator A5005093126 @default.
- W3003375462 creator A5039818146 @default.
- W3003375462 creator A5050224203 @default.
- W3003375462 creator A5066475797 @default.
- W3003375462 date "2020-01-01" @default.
- W3003375462 modified "2023-09-27" @default.
- W3003375462 title "Prediction of Blasting Cost in Limestone Mines Using Gene Expression Programming Model and Artificial Neural Networks" @default.
- W3003375462 cites W100464641 @default.
- W3003375462 cites W1064933406 @default.
- W3003375462 cites W1501347617 @default.
- W3003375462 cites W1511502491 @default.
- W3003375462 cites W1515719066 @default.
- W3003375462 cites W1528140509 @default.
- W3003375462 cites W1542869478 @default.
- W3003375462 cites W1595740553 @default.
- W3003375462 cites W1726370773 @default.
- W3003375462 cites W1812453514 @default.
- W3003375462 cites W1872869210 @default.
- W3003375462 cites W1947097685 @default.
- W3003375462 cites W1974466858 @default.
- W3003375462 cites W1975509942 @default.
- W3003375462 cites W1995898121 @default.
- W3003375462 cites W2008920373 @default.
- W3003375462 cites W2014801753 @default.
- W3003375462 cites W2020041534 @default.
- W3003375462 cites W2022752101 @default.
- W3003375462 cites W2032580627 @default.
- W3003375462 cites W2040496732 @default.
- W3003375462 cites W2043308012 @default.
- W3003375462 cites W2052888592 @default.
- W3003375462 cites W2058816882 @default.
- W3003375462 cites W2060700693 @default.
- W3003375462 cites W2077053944 @default.
- W3003375462 cites W2111825008 @default.
- W3003375462 cites W2121846964 @default.
- W3003375462 cites W2126485839 @default.
- W3003375462 cites W2187675383 @default.
- W3003375462 cites W2206362291 @default.
- W3003375462 cites W2258866006 @default.
- W3003375462 cites W2312380190 @default.
- W3003375462 cites W2324277810 @default.
- W3003375462 cites W2327490848 @default.
- W3003375462 cites W2338829258 @default.
- W3003375462 cites W2344752918 @default.
- W3003375462 cites W2521299888 @default.
- W3003375462 cites W2551053037 @default.
- W3003375462 cites W2587508113 @default.
- W3003375462 cites W2617439278 @default.
- W3003375462 cites W2648578256 @default.
- W3003375462 cites W2758300757 @default.
- W3003375462 cites W2771305791 @default.
- W3003375462 cites W2890980398 @default.
- W3003375462 cites W2897491042 @default.
- W3003375462 cites W2971370239 @default.
- W3003375462 cites W2993296716 @default.
- W3003375462 cites W2094999225 @default.
- W3003375462 doi "https://doi.org/10.22044/jme.2019.9027.1790" @default.
- W3003375462 hasPublicationYear "2020" @default.
- W3003375462 type Work @default.
- W3003375462 sameAs 3003375462 @default.
- W3003375462 citedByCount "1" @default.
- W3003375462 countsByYear W30033754622021 @default.
- W3003375462 crossrefType "journal-article" @default.
- W3003375462 hasAuthorship W3003375462A5005093126 @default.
- W3003375462 hasAuthorship W3003375462A5039818146 @default.
- W3003375462 hasAuthorship W3003375462A5050224203 @default.
- W3003375462 hasAuthorship W3003375462A5066475797 @default.
- W3003375462 hasConcept C105795698 @default.
- W3003375462 hasConcept C126049285 @default.
- W3003375462 hasConcept C127413603 @default.
- W3003375462 hasConcept C128990827 @default.
- W3003375462 hasConcept C139945424 @default.
- W3003375462 hasConcept C154238967 @default.
- W3003375462 hasConcept C154945302 @default.
- W3003375462 hasConcept C159985019 @default.
- W3003375462 hasConcept C161584116 @default.
- W3003375462 hasConcept C178790620 @default.
- W3003375462 hasConcept C185592680 @default.
- W3003375462 hasConcept C187320778 @default.
- W3003375462 hasConcept C192562407 @default.
- W3003375462 hasConcept C21200559 @default.
- W3003375462 hasConcept C24326235 @default.
- W3003375462 hasConcept C2780092901 @default.
- W3003375462 hasConcept C30407753 @default.
- W3003375462 hasConcept C33923547 @default.
- W3003375462 hasConcept C41008148 @default.
- W3003375462 hasConcept C48921125 @default.
- W3003375462 hasConcept C50644808 @default.
- W3003375462 hasConcept C50933969 @default.
- W3003375462 hasConcept C66938386 @default.
- W3003375462 hasConcept C76969082 @default.
- W3003375462 hasConceptScore W3003375462C105795698 @default.
- W3003375462 hasConceptScore W3003375462C126049285 @default.
- W3003375462 hasConceptScore W3003375462C127413603 @default.
- W3003375462 hasConceptScore W3003375462C128990827 @default.
- W3003375462 hasConceptScore W3003375462C139945424 @default.