Matches in SemOpenAlex for { <https://semopenalex.org/work/W3003417189> ?p ?o ?g. }
- W3003417189 endingPage "1308" @default.
- W3003417189 startingPage "1285" @default.
- W3003417189 abstract "Recently, energy-related CO2 emissions are considered as one of the most crucial issues and are promptly augmented due to further urbanization. In this paper, in order to model and calculate yearly CO2 emission, an artificial neural network is used. For the first time, the IWO-SVM method has been applied in modeling energy-related CO2 emissions. In this regard, consumption of different energy sources such as renewable energy, natural gas, coal, and oil, and GDP of the G8 countries in various years (from 1990 to 2016) are regarded as input in the present study. For the aim of evaluating the exact ability of the SVM and SVM-IWO models, the performance of these models in three different modes is carried out on the basis of the number of data in the test and train sections. For this purpose, implementations are split into three categories (a = 80% of the data for the train section and 20% for the test section; b = 70% of the data for the train section and 30% for the test section; and c = 60% of the data for the train section and 40% for the test section). Furthermore, five scenarios were selected on the basis of the number of input parameters and input parameters for achieving the best model. As indicated in the results in all scenarios, the correlation of the model with the hybrid invasive weed algorithm based on SVM is more favorable than that in the support vector machine model, due to better training of the SVM-IWO model than the SVM model. Moreover, the technological orientations of the G8 countries to mitigate CO2 emissions are determined through patent analysis. While the patents have essential information, investigating the published patent by a country could be helpful for determination of technological orientations. Hence, all published patents by these countries are extracted and deeply analyzed. In the next step, to find out main technological approaches, all patents and their intents have been studied. Eventually, the technological life cycles and trends of each main technology are drawn." @default.
- W3003417189 created "2020-02-07" @default.
- W3003417189 creator A5015579535 @default.
- W3003417189 creator A5025441266 @default.
- W3003417189 creator A5030003572 @default.
- W3003417189 creator A5045936239 @default.
- W3003417189 creator A5047894922 @default.
- W3003417189 creator A5058717153 @default.
- W3003417189 creator A5071993955 @default.
- W3003417189 date "2020-04-01" @default.
- W3003417189 modified "2023-09-29" @default.
- W3003417189 title "Technological assessment and modeling of energy‐related CO <sub>2</sub> emissions for the G8 countries by using hybrid IWO algorithm based on SVM" @default.
- W3003417189 cites W1563088657 @default.
- W3003417189 cites W1964357740 @default.
- W3003417189 cites W1966099889 @default.
- W3003417189 cites W1973290615 @default.
- W3003417189 cites W1991843854 @default.
- W3003417189 cites W1994157284 @default.
- W3003417189 cites W2005620485 @default.
- W3003417189 cites W2009163215 @default.
- W3003417189 cites W2025148441 @default.
- W3003417189 cites W2027963301 @default.
- W3003417189 cites W2046751517 @default.
- W3003417189 cites W2047555086 @default.
- W3003417189 cites W2050264809 @default.
- W3003417189 cites W2081949152 @default.
- W3003417189 cites W2084466438 @default.
- W3003417189 cites W2087440404 @default.
- W3003417189 cites W2095731600 @default.
- W3003417189 cites W2130372754 @default.
- W3003417189 cites W2150688767 @default.
- W3003417189 cites W2208450297 @default.
- W3003417189 cites W2234555621 @default.
- W3003417189 cites W2279110659 @default.
- W3003417189 cites W2282321458 @default.
- W3003417189 cites W2285944352 @default.
- W3003417189 cites W2341200982 @default.
- W3003417189 cites W2391404344 @default.
- W3003417189 cites W2506218973 @default.
- W3003417189 cites W2567511014 @default.
- W3003417189 cites W2606563629 @default.
- W3003417189 cites W2619810487 @default.
- W3003417189 cites W2626749429 @default.
- W3003417189 cites W2757844629 @default.
- W3003417189 cites W2778944745 @default.
- W3003417189 cites W2791714045 @default.
- W3003417189 cites W2792405344 @default.
- W3003417189 cites W2796685963 @default.
- W3003417189 cites W2889821621 @default.
- W3003417189 cites W2893218438 @default.
- W3003417189 cites W2897624950 @default.
- W3003417189 cites W2907799971 @default.
- W3003417189 cites W2912493652 @default.
- W3003417189 cites W2913735028 @default.
- W3003417189 cites W2914297384 @default.
- W3003417189 cites W2914791400 @default.
- W3003417189 cites W2915309988 @default.
- W3003417189 cites W2944115731 @default.
- W3003417189 cites W2952693998 @default.
- W3003417189 cites W2969283312 @default.
- W3003417189 cites W2971920845 @default.
- W3003417189 cites W3099788643 @default.
- W3003417189 cites W3122258292 @default.
- W3003417189 cites W3124012482 @default.
- W3003417189 doi "https://doi.org/10.1002/ese3.593" @default.
- W3003417189 hasPublicationYear "2020" @default.
- W3003417189 type Work @default.
- W3003417189 sameAs 3003417189 @default.
- W3003417189 citedByCount "21" @default.
- W3003417189 countsByYear W30034171892020 @default.
- W3003417189 countsByYear W30034171892021 @default.
- W3003417189 countsByYear W30034171892022 @default.
- W3003417189 countsByYear W30034171892023 @default.
- W3003417189 crossrefType "journal-article" @default.
- W3003417189 hasAuthorship W3003417189A5015579535 @default.
- W3003417189 hasAuthorship W3003417189A5025441266 @default.
- W3003417189 hasAuthorship W3003417189A5030003572 @default.
- W3003417189 hasAuthorship W3003417189A5045936239 @default.
- W3003417189 hasAuthorship W3003417189A5047894922 @default.
- W3003417189 hasAuthorship W3003417189A5058717153 @default.
- W3003417189 hasAuthorship W3003417189A5071993955 @default.
- W3003417189 hasBestOaLocation W30034171891 @default.
- W3003417189 hasConcept C105795698 @default.
- W3003417189 hasConcept C111919701 @default.
- W3003417189 hasConcept C11413529 @default.
- W3003417189 hasConcept C115903868 @default.
- W3003417189 hasConcept C119599485 @default.
- W3003417189 hasConcept C119857082 @default.
- W3003417189 hasConcept C12267149 @default.
- W3003417189 hasConcept C127413603 @default.
- W3003417189 hasConcept C154945302 @default.
- W3003417189 hasConcept C16910744 @default.
- W3003417189 hasConcept C186370098 @default.
- W3003417189 hasConcept C188573790 @default.
- W3003417189 hasConcept C2780129039 @default.
- W3003417189 hasConcept C33923547 @default.
- W3003417189 hasConcept C41008148 @default.
- W3003417189 hasConcept C44154836 @default.