Matches in SemOpenAlex for { <https://semopenalex.org/work/W3003552243> ?p ?o ?g. }
- W3003552243 endingPage "5290" @default.
- W3003552243 startingPage "5277" @default.
- W3003552243 abstract "Of late, convolutional neural networks (CNNs) find great attention in hyperspectral image (HSI) classification since deep CNNs exhibit commendable performance for computer vision-related areas. CNNs have already proved to be very effective feature extractors, especially for the classification of large data sets composed of 2-D images. However, due to the existence of noisy or correlated spectral bands in the spectral domain and nonuniform pixels in the spatial neighborhood, HSI classification results are often degraded and unacceptable. However, the elementary CNN models often find intrinsic representation of pattern directly when employed to explore the HSI in the spectral-spatial domain. In this article, we design an end-to-end spectral-spatial squeeze-and-excitation (SE) residual bag-of-feature (S3EResBoF) learning framework for HSI classification that takes as input raw 3-D image cubes without engineering and builds a codebook representation of transform feature by motivating the feature maps facilitating classification by suppressing useless feature maps based on patterns present in the feature maps. To boost the classification performance and learn the joint spatial-spectral features, every residual block is connected to every other 3-D convolutional layer through an identity mapping followed by an SE block, thereby facilitating the rich gradients through backpropagation. Additionally, we introduce batch normalization on every convolutional layer (ConvBN) to regularize the convergence of the network and scale invariant BoF quantization for the measure of classification. The experiments conducted using three well-known HSI data sets and compared with the state-of-the-art classification methods reveal that S3EResBoF provides competitive performance in terms of both classification and computation time." @default.
- W3003552243 created "2020-02-07" @default.
- W3003552243 creator A5005258575 @default.
- W3003552243 creator A5022136965 @default.
- W3003552243 creator A5025093894 @default.
- W3003552243 creator A5038161265 @default.
- W3003552243 creator A5087427076 @default.
- W3003552243 date "2020-08-01" @default.
- W3003552243 modified "2023-10-17" @default.
- W3003552243 title "Lightweight Spectral–Spatial Squeeze-and- Excitation Residual Bag-of-Features Learning for Hyperspectral Classification" @default.
- W3003552243 cites W1966580635 @default.
- W3003552243 cites W1998030734 @default.
- W3003552243 cites W2013251902 @default.
- W3003552243 cites W2018257962 @default.
- W3003552243 cites W2022470997 @default.
- W3003552243 cites W2029316659 @default.
- W3003552243 cites W2043665634 @default.
- W3003552243 cites W2046005667 @default.
- W3003552243 cites W2066916495 @default.
- W3003552243 cites W2069231830 @default.
- W3003552243 cites W2087263574 @default.
- W3003552243 cites W2097915756 @default.
- W3003552243 cites W2112796928 @default.
- W3003552243 cites W2114819256 @default.
- W3003552243 cites W2136251662 @default.
- W3003552243 cites W2152057649 @default.
- W3003552243 cites W2155658307 @default.
- W3003552243 cites W2194775991 @default.
- W3003552243 cites W2465503420 @default.
- W3003552243 cites W2500751094 @default.
- W3003552243 cites W2588023376 @default.
- W3003552243 cites W2603834682 @default.
- W3003552243 cites W2614326984 @default.
- W3003552243 cites W2752782242 @default.
- W3003552243 cites W2764276316 @default.
- W3003552243 cites W2768309288 @default.
- W3003552243 cites W2790275230 @default.
- W3003552243 cites W2791006446 @default.
- W3003552243 cites W2792332881 @default.
- W3003552243 cites W2793941577 @default.
- W3003552243 cites W2794472454 @default.
- W3003552243 cites W2804902458 @default.
- W3003552243 cites W2805177060 @default.
- W3003552243 cites W2809482722 @default.
- W3003552243 cites W2809635958 @default.
- W3003552243 cites W2888119354 @default.
- W3003552243 cites W2896847173 @default.
- W3003552243 cites W2898377853 @default.
- W3003552243 cites W2898381489 @default.
- W3003552243 cites W2901461790 @default.
- W3003552243 cites W2901639336 @default.
- W3003552243 cites W2901819993 @default.
- W3003552243 cites W2912961521 @default.
- W3003552243 cites W2914331134 @default.
- W3003552243 cites W2919115771 @default.
- W3003552243 cites W2922088567 @default.
- W3003552243 cites W2941141441 @default.
- W3003552243 cites W2941387379 @default.
- W3003552243 cites W3084521418 @default.
- W3003552243 cites W3100011500 @default.
- W3003552243 cites W3102274762 @default.
- W3003552243 cites W3105357426 @default.
- W3003552243 doi "https://doi.org/10.1109/tgrs.2019.2961681" @default.
- W3003552243 hasPublicationYear "2020" @default.
- W3003552243 type Work @default.
- W3003552243 sameAs 3003552243 @default.
- W3003552243 citedByCount "63" @default.
- W3003552243 countsByYear W30035522432020 @default.
- W3003552243 countsByYear W30035522432021 @default.
- W3003552243 countsByYear W30035522432022 @default.
- W3003552243 countsByYear W30035522432023 @default.
- W3003552243 crossrefType "journal-article" @default.
- W3003552243 hasAuthorship W3003552243A5005258575 @default.
- W3003552243 hasAuthorship W3003552243A5022136965 @default.
- W3003552243 hasAuthorship W3003552243A5025093894 @default.
- W3003552243 hasAuthorship W3003552243A5038161265 @default.
- W3003552243 hasAuthorship W3003552243A5087427076 @default.
- W3003552243 hasConcept C11413529 @default.
- W3003552243 hasConcept C115961682 @default.
- W3003552243 hasConcept C136886441 @default.
- W3003552243 hasConcept C138885662 @default.
- W3003552243 hasConcept C144024400 @default.
- W3003552243 hasConcept C153180895 @default.
- W3003552243 hasConcept C154945302 @default.
- W3003552243 hasConcept C155512373 @default.
- W3003552243 hasConcept C159078339 @default.
- W3003552243 hasConcept C160633673 @default.
- W3003552243 hasConcept C19165224 @default.
- W3003552243 hasConcept C2776401178 @default.
- W3003552243 hasConcept C41008148 @default.
- W3003552243 hasConcept C41895202 @default.
- W3003552243 hasConcept C52622490 @default.
- W3003552243 hasConcept C75294576 @default.
- W3003552243 hasConcept C81363708 @default.
- W3003552243 hasConceptScore W3003552243C11413529 @default.
- W3003552243 hasConceptScore W3003552243C115961682 @default.
- W3003552243 hasConceptScore W3003552243C136886441 @default.
- W3003552243 hasConceptScore W3003552243C138885662 @default.