Matches in SemOpenAlex for { <https://semopenalex.org/work/W3003646942> ?p ?o ?g. }
Showing items 1 to 72 of
72
with 100 items per page.
- W3003646942 abstract "Good representations of data eliminate irrelevant variability of the input data, while preserving the information that is useful for the ultimate task. Among the various ways for learning representation is using deep learning methods. Deep feature hierarchies are formed by stacking unsupervised modules on top of each other, forming multiple nonlinear transformations to produce better representations. In this talk, we will first show how deep learning is used for bioactivity prediction of chemical compounds. Molecules are represented as several convolutional neural networks to predict their bioactivity. In addition, a new concept of merging multiple convolutional neural networks and an automatic learning features representation for the chemical compounds was proposed using the values within neurons of the last layer of the CNN architecture. We will also show how the concepts of deep learning is adapted into a deep belief network (DBN) to enhance the molecular similarity searching. The DBN achieves feature abstraction by reconstruction weight for each feature and minimizing the reconstruction error over the whole feature set. The DBN is later enhanced using data fusion to obtain a lower detection error probability and a higher reliability by using data from multiple distributed descriptors. Secondly, we will show how we used deep learning for stock market prediction. Here, we developed a Deep Long Short Term Memory Network model that is able to forecast the crude palm oil price movement with combined factors such as other commodities prices, weather and news sentiments and price movement of crude palm oil. We also show how we combined stock markets price and financial news and deployed the Long Short Term Memory (LSTM), Recurrent Neural Network (RNN), and Word 2 Vector (Word2Vec) to project the stock prices for the following seven days. Finally, we will show how we exploited deep learning method for the opinion mining and later used it to extract the product's aspects from the user textual review for recommendation systems. Specifically, we employ a multichannel convolutional neural network (MCNN) for two different input layers, namely, word embedding layer and Part-of-speech (POS) tag embedding layer. We show effectiveness of the proposed model in terms of both aspect extraction and rating prediction performance." @default.
- W3003646942 created "2020-02-07" @default.
- W3003646942 creator A5007054128 @default.
- W3003646942 date "2019-09-01" @default.
- W3003646942 modified "2023-09-24" @default.
- W3003646942 title "Deep Learning Approaches for Big Data Analysis" @default.
- W3003646942 doi "https://doi.org/10.23919/eecsi48112.2019.8977075" @default.
- W3003646942 hasPublicationYear "2019" @default.
- W3003646942 type Work @default.
- W3003646942 sameAs 3003646942 @default.
- W3003646942 citedByCount "0" @default.
- W3003646942 crossrefType "proceedings-article" @default.
- W3003646942 hasAuthorship W3003646942A5007054128 @default.
- W3003646942 hasConcept C108583219 @default.
- W3003646942 hasConcept C116409475 @default.
- W3003646942 hasConcept C119857082 @default.
- W3003646942 hasConcept C124101348 @default.
- W3003646942 hasConcept C138885662 @default.
- W3003646942 hasConcept C153180895 @default.
- W3003646942 hasConcept C154945302 @default.
- W3003646942 hasConcept C2776401178 @default.
- W3003646942 hasConcept C41008148 @default.
- W3003646942 hasConcept C41895202 @default.
- W3003646942 hasConcept C50644808 @default.
- W3003646942 hasConcept C59404180 @default.
- W3003646942 hasConcept C66402592 @default.
- W3003646942 hasConcept C75684735 @default.
- W3003646942 hasConcept C81363708 @default.
- W3003646942 hasConcept C97385483 @default.
- W3003646942 hasConceptScore W3003646942C108583219 @default.
- W3003646942 hasConceptScore W3003646942C116409475 @default.
- W3003646942 hasConceptScore W3003646942C119857082 @default.
- W3003646942 hasConceptScore W3003646942C124101348 @default.
- W3003646942 hasConceptScore W3003646942C138885662 @default.
- W3003646942 hasConceptScore W3003646942C153180895 @default.
- W3003646942 hasConceptScore W3003646942C154945302 @default.
- W3003646942 hasConceptScore W3003646942C2776401178 @default.
- W3003646942 hasConceptScore W3003646942C41008148 @default.
- W3003646942 hasConceptScore W3003646942C41895202 @default.
- W3003646942 hasConceptScore W3003646942C50644808 @default.
- W3003646942 hasConceptScore W3003646942C59404180 @default.
- W3003646942 hasConceptScore W3003646942C66402592 @default.
- W3003646942 hasConceptScore W3003646942C75684735 @default.
- W3003646942 hasConceptScore W3003646942C81363708 @default.
- W3003646942 hasConceptScore W3003646942C97385483 @default.
- W3003646942 hasLocation W30036469421 @default.
- W3003646942 hasOpenAccess W3003646942 @default.
- W3003646942 hasPrimaryLocation W30036469421 @default.
- W3003646942 hasRelatedWork W1951059531 @default.
- W3003646942 hasRelatedWork W2215041843 @default.
- W3003646942 hasRelatedWork W2337942964 @default.
- W3003646942 hasRelatedWork W2605435278 @default.
- W3003646942 hasRelatedWork W2768115187 @default.
- W3003646942 hasRelatedWork W2791521493 @default.
- W3003646942 hasRelatedWork W2806278221 @default.
- W3003646942 hasRelatedWork W2891731495 @default.
- W3003646942 hasRelatedWork W2897891760 @default.
- W3003646942 hasRelatedWork W2911640609 @default.
- W3003646942 hasRelatedWork W2951213053 @default.
- W3003646942 hasRelatedWork W2952198026 @default.
- W3003646942 hasRelatedWork W3003085320 @default.
- W3003646942 hasRelatedWork W3016681547 @default.
- W3003646942 hasRelatedWork W3022478400 @default.
- W3003646942 hasRelatedWork W3097529015 @default.
- W3003646942 hasRelatedWork W3135633885 @default.
- W3003646942 hasRelatedWork W3168990017 @default.
- W3003646942 hasRelatedWork W3207368461 @default.
- W3003646942 hasRelatedWork W3210595091 @default.
- W3003646942 isParatext "false" @default.
- W3003646942 isRetracted "false" @default.
- W3003646942 magId "3003646942" @default.
- W3003646942 workType "article" @default.