Matches in SemOpenAlex for { <https://semopenalex.org/work/W3003649279> ?p ?o ?g. }
- W3003649279 endingPage "215" @default.
- W3003649279 startingPage "169" @default.
- W3003649279 abstract "In this article, we study the excursion sets 𝒟 p =f -1 ([-p,+∞[) where f is a natural real-analytic planar Gaussian field called the Bargmann–Fock field. More precisely, f is the centered Gaussian field on ℝ 2 with covariance (x,y)↦exp(-1 2|x-y| 2 ). Alexander has proved that, if p≤0, then a.s. 𝒟 p has no unbounded component. We show that conversely, if p>0, then a.s. 𝒟 p has a unique unbounded component. As a result, the critical level of this percolation model is 0. We also prove exponential decay of crossing probabilities under the critical level. To show these results, we rely on a recent box-crossing estimate by Beffara and Gayet. We also develop several tools including a KKL-type result for biased Gaussian vectors (based on the analogous result for product Gaussian vectors by Keller, Mossel and Sen) and a sprinkling inspired discretization procedure. These intermediate results hold for more general Gaussian fields, for which we prove a discrete version of our main result." @default.
- W3003649279 created "2020-02-07" @default.
- W3003649279 creator A5027911756 @default.
- W3003649279 creator A5049983992 @default.
- W3003649279 date "2020-01-29" @default.
- W3003649279 modified "2023-10-03" @default.
- W3003649279 title "The critical threshold for Bargmann–Fock percolation" @default.
- W3003649279 cites W1546310070 @default.
- W3003649279 cites W1606109559 @default.
- W3003649279 cites W1973212662 @default.
- W3003649279 cites W1978526953 @default.
- W3003649279 cites W1982337866 @default.
- W3003649279 cites W2005897649 @default.
- W3003649279 cites W2008911911 @default.
- W3003649279 cites W2010413041 @default.
- W3003649279 cites W2031047649 @default.
- W3003649279 cites W2034647305 @default.
- W3003649279 cites W2060090701 @default.
- W3003649279 cites W2080479164 @default.
- W3003649279 cites W2097612342 @default.
- W3003649279 cites W2103749128 @default.
- W3003649279 cites W2155491309 @default.
- W3003649279 cites W2593611574 @default.
- W3003649279 cites W2950947648 @default.
- W3003649279 cites W2962908106 @default.
- W3003649279 cites W2963432128 @default.
- W3003649279 cites W2963712839 @default.
- W3003649279 cites W2963739301 @default.
- W3003649279 cites W2963831994 @default.
- W3003649279 cites W2963902600 @default.
- W3003649279 cites W2964120864 @default.
- W3003649279 cites W2964138546 @default.
- W3003649279 cites W2964185303 @default.
- W3003649279 cites W3037758910 @default.
- W3003649279 cites W3098656574 @default.
- W3003649279 cites W3104962810 @default.
- W3003649279 cites W368930748 @default.
- W3003649279 cites W4243766309 @default.
- W3003649279 cites W4249774010 @default.
- W3003649279 cites W4250226066 @default.
- W3003649279 cites W4250680901 @default.
- W3003649279 cites W577213760 @default.
- W3003649279 doi "https://doi.org/10.5802/ahl.29" @default.
- W3003649279 hasPublicationYear "2020" @default.
- W3003649279 type Work @default.
- W3003649279 sameAs 3003649279 @default.
- W3003649279 citedByCount "18" @default.
- W3003649279 countsByYear W30036492792018 @default.
- W3003649279 countsByYear W30036492792020 @default.
- W3003649279 countsByYear W30036492792021 @default.
- W3003649279 countsByYear W30036492792022 @default.
- W3003649279 countsByYear W30036492792023 @default.
- W3003649279 crossrefType "journal-article" @default.
- W3003649279 hasAuthorship W3003649279A5027911756 @default.
- W3003649279 hasAuthorship W3003649279A5049983992 @default.
- W3003649279 hasBestOaLocation W30036492791 @default.
- W3003649279 hasConcept C105795698 @default.
- W3003649279 hasConcept C114614502 @default.
- W3003649279 hasConcept C114852677 @default.
- W3003649279 hasConcept C118615104 @default.
- W3003649279 hasConcept C121332964 @default.
- W3003649279 hasConcept C121864883 @default.
- W3003649279 hasConcept C134306372 @default.
- W3003649279 hasConcept C151376022 @default.
- W3003649279 hasConcept C163716315 @default.
- W3003649279 hasConcept C168167062 @default.
- W3003649279 hasConcept C169760540 @default.
- W3003649279 hasConcept C17744445 @default.
- W3003649279 hasConcept C178650346 @default.
- W3003649279 hasConcept C199539241 @default.
- W3003649279 hasConcept C202444582 @default.
- W3003649279 hasConcept C2779826952 @default.
- W3003649279 hasConcept C2780457167 @default.
- W3003649279 hasConcept C2780550144 @default.
- W3003649279 hasConcept C33923547 @default.
- W3003649279 hasConcept C37914503 @default.
- W3003649279 hasConcept C51267290 @default.
- W3003649279 hasConcept C61326573 @default.
- W3003649279 hasConcept C62520636 @default.
- W3003649279 hasConcept C86803240 @default.
- W3003649279 hasConcept C9652623 @default.
- W3003649279 hasConceptScore W3003649279C105795698 @default.
- W3003649279 hasConceptScore W3003649279C114614502 @default.
- W3003649279 hasConceptScore W3003649279C114852677 @default.
- W3003649279 hasConceptScore W3003649279C118615104 @default.
- W3003649279 hasConceptScore W3003649279C121332964 @default.
- W3003649279 hasConceptScore W3003649279C121864883 @default.
- W3003649279 hasConceptScore W3003649279C134306372 @default.
- W3003649279 hasConceptScore W3003649279C151376022 @default.
- W3003649279 hasConceptScore W3003649279C163716315 @default.
- W3003649279 hasConceptScore W3003649279C168167062 @default.
- W3003649279 hasConceptScore W3003649279C169760540 @default.
- W3003649279 hasConceptScore W3003649279C17744445 @default.
- W3003649279 hasConceptScore W3003649279C178650346 @default.
- W3003649279 hasConceptScore W3003649279C199539241 @default.
- W3003649279 hasConceptScore W3003649279C202444582 @default.
- W3003649279 hasConceptScore W3003649279C2779826952 @default.
- W3003649279 hasConceptScore W3003649279C2780457167 @default.