Matches in SemOpenAlex for { <https://semopenalex.org/work/W3003663164> ?p ?o ?g. }
- W3003663164 endingPage "22883" @default.
- W3003663164 startingPage "22874" @default.
- W3003663164 abstract "Cancer is one of the most feared and aggressive diseases in the world and is responsible for more than 9 million deaths universally. Staging cancer early increases the chances of recovery. One staging technique is RNA sequence analysis. Recent advances in the efficiency and accuracy of artificial intelligence techniques and optimization algorithms have facilitated the analysis of human genomics. This paper introduces a novel optimized deep learning approach based on binary particle swarm optimization with decision tree (BPSO-DT) and convolutional neural network (CNN) to classify different types of cancer based on tumor RNA sequence (RNA-Seq) gene expression data. The cancer types that will be investigated in this research are kidney renal clear cell carcinoma (KIRC), breast invasive carcinoma (BRCA), lung squamous cell carcinoma (LUSC), lung adenocarcinoma (LUAD) and uterine corpus endometrial carcinoma (UCEC). The proposed approach consists of three phases. The first phase is preprocessing, which at first optimize the high-dimensional RNA-seq to select only optimal features using BPSO-DT and then, converts the optimized RNA-Seq to 2D images. The second phase is augmentation, which increases the original dataset of 2086 samples to be 5 times larger. The selection of the augmentations techniques was based achieving the least impact on manipulating the features of the images. This phase helps to overcome the overfitting problem and trains the model to achieve better accuracy. The third phase is deep CNN architecture. In this phase, an architecture of two main convolutional layers for featured extraction and two fully connected layers is introduced to classify the 5 different types of cancer according to the availability of images on the dataset. The results and the performance metrics such as recall, precision and F1 score show that the proposed approach achieved an overall testing accuracy of 96.90%. The comparative results are introduced, and the proposed method outperforms those in related works in terms of testing accuracy for 5 classes of cancer. Moreover, the proposed approach is less complex and consume less memory." @default.
- W3003663164 created "2020-02-07" @default.
- W3003663164 creator A5024568550 @default.
- W3003663164 creator A5024909557 @default.
- W3003663164 creator A5037470010 @default.
- W3003663164 creator A5049446003 @default.
- W3003663164 creator A5051932112 @default.
- W3003663164 date "2020-01-01" @default.
- W3003663164 modified "2023-10-11" @default.
- W3003663164 title "Artificial Intelligence Technique for Gene Expression by Tumor RNA-Seq Data: A Novel Optimized Deep Learning Approach" @default.
- W3003663164 cites W1584308190 @default.
- W3003663164 cites W1964176984 @default.
- W3003663164 cites W2097117768 @default.
- W3003663164 cites W2108598243 @default.
- W3003663164 cites W2158485828 @default.
- W3003663164 cites W2183341477 @default.
- W3003663164 cites W2194775991 @default.
- W3003663164 cites W2417429787 @default.
- W3003663164 cites W2531409750 @default.
- W3003663164 cites W2592929672 @default.
- W3003663164 cites W2606090416 @default.
- W3003663164 cites W2618530766 @default.
- W3003663164 cites W2724430069 @default.
- W3003663164 cites W2754896703 @default.
- W3003663164 cites W2755012395 @default.
- W3003663164 cites W2755930428 @default.
- W3003663164 cites W2789367970 @default.
- W3003663164 cites W2791697444 @default.
- W3003663164 cites W2794284562 @default.
- W3003663164 cites W2795686629 @default.
- W3003663164 cites W2796153225 @default.
- W3003663164 cites W2805881321 @default.
- W3003663164 cites W2817817898 @default.
- W3003663164 cites W2889315297 @default.
- W3003663164 cites W2889646458 @default.
- W3003663164 cites W2894885919 @default.
- W3003663164 cites W2895084243 @default.
- W3003663164 cites W2898799488 @default.
- W3003663164 cites W2899307344 @default.
- W3003663164 cites W2909194804 @default.
- W3003663164 cites W2913559493 @default.
- W3003663164 cites W2916845318 @default.
- W3003663164 cites W2919115771 @default.
- W3003663164 cites W2923682152 @default.
- W3003663164 cites W2935703330 @default.
- W3003663164 cites W2945210856 @default.
- W3003663164 cites W2947231938 @default.
- W3003663164 cites W2953098895 @default.
- W3003663164 cites W2963446712 @default.
- W3003663164 cites W2964118901 @default.
- W3003663164 cites W2969535628 @default.
- W3003663164 cites W3105282616 @default.
- W3003663164 doi "https://doi.org/10.1109/access.2020.2970210" @default.
- W3003663164 hasPublicationYear "2020" @default.
- W3003663164 type Work @default.
- W3003663164 sameAs 3003663164 @default.
- W3003663164 citedByCount "56" @default.
- W3003663164 countsByYear W30036631642020 @default.
- W3003663164 countsByYear W30036631642021 @default.
- W3003663164 countsByYear W30036631642022 @default.
- W3003663164 countsByYear W30036631642023 @default.
- W3003663164 crossrefType "journal-article" @default.
- W3003663164 hasAuthorship W3003663164A5024568550 @default.
- W3003663164 hasAuthorship W3003663164A5024909557 @default.
- W3003663164 hasAuthorship W3003663164A5037470010 @default.
- W3003663164 hasAuthorship W3003663164A5049446003 @default.
- W3003663164 hasAuthorship W3003663164A5051932112 @default.
- W3003663164 hasBestOaLocation W30036631641 @default.
- W3003663164 hasConcept C108583219 @default.
- W3003663164 hasConcept C153180895 @default.
- W3003663164 hasConcept C154945302 @default.
- W3003663164 hasConcept C22019652 @default.
- W3003663164 hasConcept C34736171 @default.
- W3003663164 hasConcept C41008148 @default.
- W3003663164 hasConcept C50644808 @default.
- W3003663164 hasConcept C81363708 @default.
- W3003663164 hasConceptScore W3003663164C108583219 @default.
- W3003663164 hasConceptScore W3003663164C153180895 @default.
- W3003663164 hasConceptScore W3003663164C154945302 @default.
- W3003663164 hasConceptScore W3003663164C22019652 @default.
- W3003663164 hasConceptScore W3003663164C34736171 @default.
- W3003663164 hasConceptScore W3003663164C41008148 @default.
- W3003663164 hasConceptScore W3003663164C50644808 @default.
- W3003663164 hasConceptScore W3003663164C81363708 @default.
- W3003663164 hasLocation W30036631641 @default.
- W3003663164 hasOpenAccess W3003663164 @default.
- W3003663164 hasPrimaryLocation W30036631641 @default.
- W3003663164 hasRelatedWork W2991587282 @default.
- W3003663164 hasRelatedWork W3008919350 @default.
- W3003663164 hasRelatedWork W3029198973 @default.
- W3003663164 hasRelatedWork W3099765033 @default.
- W3003663164 hasRelatedWork W3133861977 @default.
- W3003663164 hasRelatedWork W3167935049 @default.
- W3003663164 hasRelatedWork W3193565141 @default.
- W3003663164 hasRelatedWork W4226493464 @default.
- W3003663164 hasRelatedWork W4288018740 @default.
- W3003663164 hasRelatedWork W4312417841 @default.
- W3003663164 hasVolume "8" @default.