Matches in SemOpenAlex for { <https://semopenalex.org/work/W3003903700> ?p ?o ?g. }
- W3003903700 abstract "Objective: Axillary lymph node (ALN) metastasis status is important in guiding treatment in breast cancer. The aims were to assess how deep convolutional neural network (CNN) performed compared with radiomics analysis in predicting ALN metastasis using breast ultrasound, and to investigate the value of both intratumoral and peritumoral regions in ALN metastasis prediction. Methods: We retrospectively enrolled 479 breast cancer patients with 2,395 breast ultrasound images. Based on the intratumoral, peritumoral, and combined intra- and peritumoral regions, three CNNs were built using DenseNet, and three radiomics models were built using random forest, respectively. By combining the molecular subtype, another three CNNs and three radiomics models were built. All models were built on training cohort (343 patients 1,715 images) and evaluated on testing cohort (136 patients 680 images) with ROC analysis. Another prospective cohort of 16 patients was enrolled to further test the models. Results: AUCs of image-only CNNs in both training/testing cohorts were 0.957/0.912 for combined region, 0.944/0.775 for peritumoral region, and 0.937/0.748 for intratumoral region, which were numerically higher than their corresponding radiomics models with AUCs of 0.940/0.886, 0.920/0.724, and 0.913/0.693. The overall performance of image-molecular CNNs in terms of AUCs on training/testing cohorts slightly increased to 0.962/0.933, 0.951/0.813, and 0.931/0.794, respectively. AUCs of both CNNs and radiomics models built on combined region were significantly better than those on either intratumoral or peritumoral region on the testing cohort (p < 0.05). In the prospective study, the CNN model built on combined region achieved the highest AUC of 0.95 among all image-only models. Conclusions: CNNs showed numerically better overall performance compared with radiomics models in predicting ALN metastasis in breast cancer. For both CNNs and radiomics models, combining intratumoral, and peritumoral regions achieved significantly better performance." @default.
- W3003903700 created "2020-02-07" @default.
- W3003903700 creator A5041434463 @default.
- W3003903700 creator A5047536759 @default.
- W3003903700 creator A5052447580 @default.
- W3003903700 creator A5066169118 @default.
- W3003903700 creator A5072861069 @default.
- W3003903700 creator A5073240877 @default.
- W3003903700 creator A5073819666 @default.
- W3003903700 creator A5084212819 @default.
- W3003903700 date "2020-01-31" @default.
- W3003903700 modified "2023-10-16" @default.
- W3003903700 title "Deep Learning vs. Radiomics for Predicting Axillary Lymph Node Metastasis of Breast Cancer Using Ultrasound Images: Don't Forget the Peritumoral Region" @default.
- W3003903700 cites W1965523559 @default.
- W3003903700 cites W1987268460 @default.
- W3003903700 cites W2004239490 @default.
- W3003903700 cites W2037158753 @default.
- W3003903700 cites W2042181152 @default.
- W3003903700 cites W2071980572 @default.
- W3003903700 cites W2096785769 @default.
- W3003903700 cites W2098641762 @default.
- W3003903700 cites W2103004421 @default.
- W3003903700 cites W2113587151 @default.
- W3003903700 cites W2115399697 @default.
- W3003903700 cites W2115867454 @default.
- W3003903700 cites W2133520979 @default.
- W3003903700 cites W2135084486 @default.
- W3003903700 cites W2142059226 @default.
- W3003903700 cites W2143391647 @default.
- W3003903700 cites W2146078691 @default.
- W3003903700 cites W2156665896 @default.
- W3003903700 cites W2328176404 @default.
- W3003903700 cites W2346343836 @default.
- W3003903700 cites W2403976199 @default.
- W3003903700 cites W2493683088 @default.
- W3003903700 cites W2581082771 @default.
- W3003903700 cites W2603868227 @default.
- W3003903700 cites W2616461360 @default.
- W3003903700 cites W2734865205 @default.
- W3003903700 cites W2740772745 @default.
- W3003903700 cites W2742282063 @default.
- W3003903700 cites W2747930650 @default.
- W3003903700 cites W2753148287 @default.
- W3003903700 cites W2757901638 @default.
- W3003903700 cites W2763355946 @default.
- W3003903700 cites W2767128594 @default.
- W3003903700 cites W2767145937 @default.
- W3003903700 cites W2781525129 @default.
- W3003903700 cites W2783263822 @default.
- W3003903700 cites W2788633781 @default.
- W3003903700 cites W2807963440 @default.
- W3003903700 cites W2884167830 @default.
- W3003903700 cites W2885882002 @default.
- W3003903700 cites W2886281300 @default.
- W3003903700 cites W2889261422 @default.
- W3003903700 cites W2897259154 @default.
- W3003903700 cites W2900955936 @default.
- W3003903700 cites W2911964244 @default.
- W3003903700 cites W2963446712 @default.
- W3003903700 doi "https://doi.org/10.3389/fonc.2020.00053" @default.
- W3003903700 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/7006026" @default.
- W3003903700 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/32083007" @default.
- W3003903700 hasPublicationYear "2020" @default.
- W3003903700 type Work @default.
- W3003903700 sameAs 3003903700 @default.
- W3003903700 citedByCount "129" @default.
- W3003903700 countsByYear W30039037002020 @default.
- W3003903700 countsByYear W30039037002021 @default.
- W3003903700 countsByYear W30039037002022 @default.
- W3003903700 countsByYear W30039037002023 @default.
- W3003903700 crossrefType "journal-article" @default.
- W3003903700 hasAuthorship W3003903700A5041434463 @default.
- W3003903700 hasAuthorship W3003903700A5047536759 @default.
- W3003903700 hasAuthorship W3003903700A5052447580 @default.
- W3003903700 hasAuthorship W3003903700A5066169118 @default.
- W3003903700 hasAuthorship W3003903700A5072861069 @default.
- W3003903700 hasAuthorship W3003903700A5073240877 @default.
- W3003903700 hasAuthorship W3003903700A5073819666 @default.
- W3003903700 hasAuthorship W3003903700A5084212819 @default.
- W3003903700 hasBestOaLocation W30039037001 @default.
- W3003903700 hasConcept C121608353 @default.
- W3003903700 hasConcept C126322002 @default.
- W3003903700 hasConcept C126838900 @default.
- W3003903700 hasConcept C143753070 @default.
- W3003903700 hasConcept C143998085 @default.
- W3003903700 hasConcept C154945302 @default.
- W3003903700 hasConcept C2778559731 @default.
- W3003903700 hasConcept C2779013556 @default.
- W3003903700 hasConcept C2780849966 @default.
- W3003903700 hasConcept C2992571226 @default.
- W3003903700 hasConcept C41008148 @default.
- W3003903700 hasConcept C530470458 @default.
- W3003903700 hasConcept C71924100 @default.
- W3003903700 hasConcept C72563966 @default.
- W3003903700 hasConcept C81363708 @default.
- W3003903700 hasConceptScore W3003903700C121608353 @default.
- W3003903700 hasConceptScore W3003903700C126322002 @default.
- W3003903700 hasConceptScore W3003903700C126838900 @default.
- W3003903700 hasConceptScore W3003903700C143753070 @default.
- W3003903700 hasConceptScore W3003903700C143998085 @default.