Matches in SemOpenAlex for { <https://semopenalex.org/work/W3003931501> ?p ?o ?g. }
- W3003931501 abstract "Pre-exposure prophylaxis (PrEP) has emerged as a promising strategy for preventing the transmission of HIV. Although only one formulation is currently approved for PrEP, research into both new compounds and new delivery systems for PrEP regimens offer intriguing challenges from the perspective of pharmacokinetic and pharmacodynamic modeling. This review aims to provide an overview the current modeling landscape for HIV PrEP, focused on PK/PD and QSP models relating to antiretroviral agents. Both current PrEP treatments and new compounds that show promise as PrEP agents are highlighted, as well as models of uncommon administration routes, predictions based on models of mechanism of action and viral dynamics, and issues related to adherence to therapy. The spread of human immunodeficiency virus (HIV) remains one of the foremost global health concerns. In the absence of a vaccine, other prophylactic strategies have been developed to prevent HIV transmission. One approach, known as pre-exposure prophylaxis (PrEP), allows HIV-negative individuals who are at high risk of exposure to the virus, be it through an HIV-positive sexual partner or through the shared use of drug injection equipment, to substantially reduce the risk of developing an HIV infection. PrEP is a relatively recent approach to combating the HIV epidemic, with the only currently approved treatment being Truvada, a daily oral antiretroviral (ARV) therapy initially indicated in the treatment of active HIV-1 infections, but approved for HIV PrEP in 2012. Although PrEP therapy has consistently demonstrated high efficacy in preventing HIV infection, this efficacy is dependent on patient adherence to the prescribed treatment regimen. This can present a significant problem in low- and middle-income countries, which may lack the infrastructure to provide sufficient access to PrEP medication to maintain daily dosing regimens. Furthermore, while the conventional approach has generally been to advocate for continuous administration akin to regimens used for viral suppression in infected patients, there has been some discussion of whether a better treatment paradigm might be to push for PrEP therapy primarily during those known periods of heightened exposure risk, while relying on post-exposure prophylaxis regimens to prevent infection after unanticipated exposures during low-risk periods. These considerations have led to a push for the development of long-duration and on-demand PrEP formulations, including subdermal and subcutaneous implants, slow-release intramuscular depot injections, vaginal and rectal antimicrobial gels, and intravaginal rings and dissolving films. PrEP therapy is a quickly evolving field, with a variety of antiretroviral compounds and formulations under investigation. This review aims to report on notable drugs and formulations from a pharmacokinetic/pharmacodynamic (PK/PD) modeling perspective. Given the nature of PrEP as a preventive therapy designed for long-term use, clinical trials for PrEP therapies can last for months or even years, particularly in the case of long-duration formulations. Furthermore, in contrast to antiretroviral trials in infected patients, pharmacodynamic endpoints in PrEP therapies are difficult to quantify, as the primary endpoint for efficacy is generally the rate of seroconversion. Computational modeling approaches offer flexible and powerful tools to provide insight into drug behavior in clinical settings, and can ultimately reduce the time, expense, and patient burden incurred in the development of PrEP therapies." @default.
- W3003931501 created "2020-02-07" @default.
- W3003931501 creator A5062359330 @default.
- W3003931501 creator A5074303161 @default.
- W3003931501 creator A5078265839 @default.
- W3003931501 date "2020-01-31" @default.
- W3003931501 modified "2023-10-17" @default.
- W3003931501 title "Modeling HIV Pre-Exposure Prophylaxis" @default.
- W3003931501 cites W1482153588 @default.
- W3003931501 cites W1552261986 @default.
- W3003931501 cites W1921422247 @default.
- W3003931501 cites W1967035954 @default.
- W3003931501 cites W1968923212 @default.
- W3003931501 cites W1973416505 @default.
- W3003931501 cites W1979495409 @default.
- W3003931501 cites W1985999222 @default.
- W3003931501 cites W1986814711 @default.
- W3003931501 cites W1986852302 @default.
- W3003931501 cites W1991541076 @default.
- W3003931501 cites W1994401508 @default.
- W3003931501 cites W1998202799 @default.
- W3003931501 cites W1999048558 @default.
- W3003931501 cites W2000761749 @default.
- W3003931501 cites W2002127959 @default.
- W3003931501 cites W2044369525 @default.
- W3003931501 cites W2046348452 @default.
- W3003931501 cites W2051116409 @default.
- W3003931501 cites W2056305086 @default.
- W3003931501 cites W2057912460 @default.
- W3003931501 cites W2060798023 @default.
- W3003931501 cites W2071059013 @default.
- W3003931501 cites W2075144974 @default.
- W3003931501 cites W2079118009 @default.
- W3003931501 cites W2083226492 @default.
- W3003931501 cites W2090630729 @default.
- W3003931501 cites W2098100768 @default.
- W3003931501 cites W2103920597 @default.
- W3003931501 cites W2107980851 @default.
- W3003931501 cites W2110961674 @default.
- W3003931501 cites W2112791146 @default.
- W3003931501 cites W2117057469 @default.
- W3003931501 cites W2117605859 @default.
- W3003931501 cites W2129510970 @default.
- W3003931501 cites W2138237746 @default.
- W3003931501 cites W2139452524 @default.
- W3003931501 cites W2147169218 @default.
- W3003931501 cites W2149653091 @default.
- W3003931501 cites W2150644408 @default.
- W3003931501 cites W2162226934 @default.
- W3003931501 cites W2163912123 @default.
- W3003931501 cites W2168251450 @default.
- W3003931501 cites W2290010664 @default.
- W3003931501 cites W2326890844 @default.
- W3003931501 cites W2344135905 @default.
- W3003931501 cites W2345950548 @default.
- W3003931501 cites W2504488327 @default.
- W3003931501 cites W2516964306 @default.
- W3003931501 cites W2519933747 @default.
- W3003931501 cites W2558446330 @default.
- W3003931501 cites W2580563172 @default.
- W3003931501 cites W2597987399 @default.
- W3003931501 cites W2617514227 @default.
- W3003931501 cites W2767382319 @default.
- W3003931501 cites W2774276060 @default.
- W3003931501 cites W2802054343 @default.
- W3003931501 cites W2889068348 @default.
- W3003931501 cites W2899072855 @default.
- W3003931501 cites W2911215113 @default.
- W3003931501 cites W2911976827 @default.
- W3003931501 cites W2960874370 @default.
- W3003931501 cites W37230812 @default.
- W3003931501 cites W4327847694 @default.
- W3003931501 doi "https://doi.org/10.3389/fphar.2019.01514" @default.
- W3003931501 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/7005100" @default.
- W3003931501 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/32082142" @default.
- W3003931501 hasPublicationYear "2020" @default.
- W3003931501 type Work @default.
- W3003931501 sameAs 3003931501 @default.
- W3003931501 citedByCount "5" @default.
- W3003931501 countsByYear W30039315012021 @default.
- W3003931501 countsByYear W30039315012022 @default.
- W3003931501 countsByYear W30039315012023 @default.
- W3003931501 crossrefType "journal-article" @default.
- W3003931501 hasAuthorship W3003931501A5062359330 @default.
- W3003931501 hasAuthorship W3003931501A5074303161 @default.
- W3003931501 hasAuthorship W3003931501A5078265839 @default.
- W3003931501 hasBestOaLocation W30039315011 @default.
- W3003931501 hasConcept C119599485 @default.
- W3003931501 hasConcept C127413603 @default.
- W3003931501 hasConcept C142462285 @default.
- W3003931501 hasConcept C177713679 @default.
- W3003931501 hasConcept C197746943 @default.
- W3003931501 hasConcept C203014093 @default.
- W3003931501 hasConcept C2776939746 @default.
- W3003931501 hasConcept C2776983459 @default.
- W3003931501 hasConcept C2777931914 @default.
- W3003931501 hasConcept C2778190748 @default.
- W3003931501 hasConcept C2779496540 @default.
- W3003931501 hasConcept C2780035454 @default.
- W3003931501 hasConcept C2780195530 @default.