Matches in SemOpenAlex for { <https://semopenalex.org/work/W3003976882> ?p ?o ?g. }
- W3003976882 endingPage "01011" @default.
- W3003976882 startingPage "01011" @default.
- W3003976882 abstract "Resonant reactions in astrophysics play and important role as un- expected resonances may enhance the astrophysical factor with respect to the direct reaction contribution, altering the predicted nucleosynthesis scenarios by changing, for instance, the expected nucleosynthesis path. They also are of great interest in nuclear structure studies, since the determination of energies, spin-parities and partial widths sheds light on the occurrence of cluster structures, for instance. However, nuclear reactions in most astrophysical environments usually take place at energies below about 1 MeV, leading to an exponential de- crease of the cross sections due to the effect of the penetration of the Coulomb barrier. Also, at energies so low to be comparable with those associated to elec- tronic degrees of freedom, the effect of atomic and/or molecular clouds cannot be neglected, resulting in a shielding of nuclear charges and in an enhancement of the cross sections with respect to the case of bare nuclei (the so called elec- tron screening effect). Owing to vanishingly small cross sections and ambigui- ties in the extrapolation due to the electron screening, supplying accurate cross sections for astrophysical modeling is extremely challenging. Indirect methods have been introduced to explore the energy range of astrophysical interest with no need of extrapolation, even guided by theoretical arguments. In particular, the Trojan Horse Method makes use of quasi-free reactions with three particles in the exit channel, a+A ^ c + C + s, to deduce the cross section of the reaction of astrophysical interest, a + x ^ c + C, under the hypothesis that A shows a strong x + s cluster structure. Even if measurements are carried out above astro- physical energies to be free from Coulomb suppression and electron screening, the range of astrophysical interest can be covered thanks to the x - s intercluster motion and binding energy. In these proceedings we will show the application of the THM, in the case of resonant reactions, using the generalised R-matrix approach introduced by A.M. Mukhamedzhanov. We will discuss the possibil- ity to extract resonance parameters from the Trojan Horse data and perform a full spectroscopic study of low-energy and even sub-threshold resonances. In particular, we will focus on the 19 F(p, a) 16 O and the 13 C(a, n) 16 O reactions, of particular importance in the case of asymptotic giant branch stars and in the synthesis of heavy elements by means of the s-process." @default.
- W3003976882 created "2020-02-07" @default.
- W3003976882 creator A5003430474 @default.
- W3003976882 creator A5014920343 @default.
- W3003976882 creator A5030306735 @default.
- W3003976882 creator A5033048927 @default.
- W3003976882 creator A5037511856 @default.
- W3003976882 creator A5061564117 @default.
- W3003976882 creator A5070693057 @default.
- W3003976882 creator A5072840384 @default.
- W3003976882 date "2020-01-01" @default.
- W3003976882 modified "2023-09-23" @default.
- W3003976882 title "Resonant reactions of astrophysical interest studied by means of the Trojan Horse Method. Two case studies" @default.
- W3003976882 cites W146114773 @default.
- W3003976882 cites W1632204099 @default.
- W3003976882 cites W1834761330 @default.
- W3003976882 cites W1965765064 @default.
- W3003976882 cites W1971108842 @default.
- W3003976882 cites W1972565153 @default.
- W3003976882 cites W1976940248 @default.
- W3003976882 cites W1984696718 @default.
- W3003976882 cites W1986623935 @default.
- W3003976882 cites W1991374711 @default.
- W3003976882 cites W1994529108 @default.
- W3003976882 cites W1999102649 @default.
- W3003976882 cites W2005908947 @default.
- W3003976882 cites W2034989264 @default.
- W3003976882 cites W2036341233 @default.
- W3003976882 cites W2037679495 @default.
- W3003976882 cites W2038080223 @default.
- W3003976882 cites W2038170352 @default.
- W3003976882 cites W2047239686 @default.
- W3003976882 cites W2053721896 @default.
- W3003976882 cites W2067574319 @default.
- W3003976882 cites W2077529077 @default.
- W3003976882 cites W2083704724 @default.
- W3003976882 cites W2096042749 @default.
- W3003976882 cites W2113417589 @default.
- W3003976882 cites W2116631669 @default.
- W3003976882 cites W2118128315 @default.
- W3003976882 cites W2119095722 @default.
- W3003976882 cites W2131999259 @default.
- W3003976882 cites W2228405367 @default.
- W3003976882 cites W2255304100 @default.
- W3003976882 cites W2280986156 @default.
- W3003976882 cites W2296144583 @default.
- W3003976882 cites W2298727666 @default.
- W3003976882 cites W2331424270 @default.
- W3003976882 cites W2335420028 @default.
- W3003976882 cites W2338590354 @default.
- W3003976882 cites W2396005303 @default.
- W3003976882 cites W2465139167 @default.
- W3003976882 cites W2594878843 @default.
- W3003976882 cites W2745308043 @default.
- W3003976882 cites W2751654009 @default.
- W3003976882 cites W2985885020 @default.
- W3003976882 cites W3098306508 @default.
- W3003976882 cites W4242919446 @default.
- W3003976882 cites W809828685 @default.
- W3003976882 doi "https://doi.org/10.1051/epjconf/202022701011" @default.
- W3003976882 hasPublicationYear "2020" @default.
- W3003976882 type Work @default.
- W3003976882 sameAs 3003976882 @default.
- W3003976882 citedByCount "0" @default.
- W3003976882 crossrefType "journal-article" @default.
- W3003976882 hasAuthorship W3003976882A5003430474 @default.
- W3003976882 hasAuthorship W3003976882A5014920343 @default.
- W3003976882 hasAuthorship W3003976882A5030306735 @default.
- W3003976882 hasAuthorship W3003976882A5033048927 @default.
- W3003976882 hasAuthorship W3003976882A5037511856 @default.
- W3003976882 hasAuthorship W3003976882A5061564117 @default.
- W3003976882 hasAuthorship W3003976882A5070693057 @default.
- W3003976882 hasAuthorship W3003976882A5072840384 @default.
- W3003976882 hasBestOaLocation W30039768821 @default.
- W3003976882 hasConcept C113612514 @default.
- W3003976882 hasConcept C121332964 @default.
- W3003976882 hasConcept C132459708 @default.
- W3003976882 hasConcept C134306372 @default.
- W3003976882 hasConcept C147120987 @default.
- W3003976882 hasConcept C159985019 @default.
- W3003976882 hasConcept C16743098 @default.
- W3003976882 hasConcept C184779094 @default.
- W3003976882 hasConcept C185544564 @default.
- W3003976882 hasConcept C192562407 @default.
- W3003976882 hasConcept C204323151 @default.
- W3003976882 hasConcept C206191943 @default.
- W3003976882 hasConcept C33923547 @default.
- W3003976882 hasConcept C4397270 @default.
- W3003976882 hasConcept C54116275 @default.
- W3003976882 hasConcept C9342510 @default.
- W3003976882 hasConceptScore W3003976882C113612514 @default.
- W3003976882 hasConceptScore W3003976882C121332964 @default.
- W3003976882 hasConceptScore W3003976882C132459708 @default.
- W3003976882 hasConceptScore W3003976882C134306372 @default.
- W3003976882 hasConceptScore W3003976882C147120987 @default.
- W3003976882 hasConceptScore W3003976882C159985019 @default.
- W3003976882 hasConceptScore W3003976882C16743098 @default.
- W3003976882 hasConceptScore W3003976882C184779094 @default.