Matches in SemOpenAlex for { <https://semopenalex.org/work/W3004097831> ?p ?o ?g. }
Showing items 1 to 91 of
91
with 100 items per page.
- W3004097831 endingPage "427" @default.
- W3004097831 startingPage "407" @default.
- W3004097831 abstract "Summary Software fault prediction is a process of developing modules that are used by developers in order to help them to detect faulty classes or faulty modules in early phases of the development life cycle and to determine the modules that need more refactoring in the maintenance phase. Software reliability means the probability of failure has occurred during a period of time, so when we describe a system as not reliable, it means that it contains many errors, and these errors can be accepted in some systems, but it may lead to crucial problems in critical systems like aircraft, space shuttle, and medical systems. Therefore, locating faulty software modules is an essential step because it helps defining the modules that need more refactoring or more testing. In this article, an approach is developed by integrating genetics algorithm (GA) with support vector machine (SVM) classifier and particle swarm algorithm for software fault prediction as a stand though for better software fault prediction technique. The developed approach is applied into 24 datasets (12‐NASA MDP and 12‐Java open‐source projects), where NASA MDP is considered as a large‐scale dataset and Java open‐source projects are considered as a small‐scale dataset. Results indicate that integrating GA with SVM and particle swarm algorithm improves the performance of the software fault prediction process when it is applied into large‐scale and small‐scale datasets and overcome the limitations in the previous studies." @default.
- W3004097831 created "2020-02-07" @default.
- W3004097831 creator A5022734513 @default.
- W3004097831 creator A5041474454 @default.
- W3004097831 date "2020-01-27" @default.
- W3004097831 modified "2023-10-06" @default.
- W3004097831 title "Software fault prediction using particle swarm algorithm with genetic algorithm and support vector machine classifier" @default.
- W3004097831 cites W1838241330 @default.
- W3004097831 cites W1986834168 @default.
- W3004097831 cites W2032307170 @default.
- W3004097831 cites W2032411249 @default.
- W3004097831 cites W2052229651 @default.
- W3004097831 cites W2081749411 @default.
- W3004097831 cites W2094764356 @default.
- W3004097831 cites W2100493005 @default.
- W3004097831 cites W2126626812 @default.
- W3004097831 cites W2143299520 @default.
- W3004097831 cites W2155591984 @default.
- W3004097831 cites W2166541753 @default.
- W3004097831 cites W2167101736 @default.
- W3004097831 cites W2290883490 @default.
- W3004097831 cites W2320577932 @default.
- W3004097831 cites W2342639439 @default.
- W3004097831 cites W2360967250 @default.
- W3004097831 cites W2470684468 @default.
- W3004097831 cites W2474743723 @default.
- W3004097831 cites W2506064595 @default.
- W3004097831 cites W2605932792 @default.
- W3004097831 cites W2728378666 @default.
- W3004097831 cites W4240848932 @default.
- W3004097831 doi "https://doi.org/10.1002/spe.2784" @default.
- W3004097831 hasPublicationYear "2020" @default.
- W3004097831 type Work @default.
- W3004097831 sameAs 3004097831 @default.
- W3004097831 citedByCount "19" @default.
- W3004097831 countsByYear W30040978312020 @default.
- W3004097831 countsByYear W30040978312021 @default.
- W3004097831 countsByYear W30040978312022 @default.
- W3004097831 countsByYear W30040978312023 @default.
- W3004097831 crossrefType "journal-article" @default.
- W3004097831 hasAuthorship W3004097831A5022734513 @default.
- W3004097831 hasAuthorship W3004097831A5041474454 @default.
- W3004097831 hasConcept C111919701 @default.
- W3004097831 hasConcept C11413529 @default.
- W3004097831 hasConcept C119857082 @default.
- W3004097831 hasConcept C12267149 @default.
- W3004097831 hasConcept C124101348 @default.
- W3004097831 hasConcept C149091818 @default.
- W3004097831 hasConcept C152752567 @default.
- W3004097831 hasConcept C154945302 @default.
- W3004097831 hasConcept C2777904410 @default.
- W3004097831 hasConcept C41008148 @default.
- W3004097831 hasConcept C50712370 @default.
- W3004097831 hasConcept C548217200 @default.
- W3004097831 hasConcept C85617194 @default.
- W3004097831 hasConcept C95623464 @default.
- W3004097831 hasConceptScore W3004097831C111919701 @default.
- W3004097831 hasConceptScore W3004097831C11413529 @default.
- W3004097831 hasConceptScore W3004097831C119857082 @default.
- W3004097831 hasConceptScore W3004097831C12267149 @default.
- W3004097831 hasConceptScore W3004097831C124101348 @default.
- W3004097831 hasConceptScore W3004097831C149091818 @default.
- W3004097831 hasConceptScore W3004097831C152752567 @default.
- W3004097831 hasConceptScore W3004097831C154945302 @default.
- W3004097831 hasConceptScore W3004097831C2777904410 @default.
- W3004097831 hasConceptScore W3004097831C41008148 @default.
- W3004097831 hasConceptScore W3004097831C50712370 @default.
- W3004097831 hasConceptScore W3004097831C548217200 @default.
- W3004097831 hasConceptScore W3004097831C85617194 @default.
- W3004097831 hasConceptScore W3004097831C95623464 @default.
- W3004097831 hasIssue "4" @default.
- W3004097831 hasLocation W30040978311 @default.
- W3004097831 hasOpenAccess W3004097831 @default.
- W3004097831 hasPrimaryLocation W30040978311 @default.
- W3004097831 hasRelatedWork W1669934083 @default.
- W3004097831 hasRelatedWork W1948541244 @default.
- W3004097831 hasRelatedWork W1996541855 @default.
- W3004097831 hasRelatedWork W2232148991 @default.
- W3004097831 hasRelatedWork W2556319748 @default.
- W3004097831 hasRelatedWork W2557652470 @default.
- W3004097831 hasRelatedWork W2768661791 @default.
- W3004097831 hasRelatedWork W3158784734 @default.
- W3004097831 hasRelatedWork W3195168932 @default.
- W3004097831 hasRelatedWork W4316658362 @default.
- W3004097831 hasVolume "50" @default.
- W3004097831 isParatext "false" @default.
- W3004097831 isRetracted "false" @default.
- W3004097831 magId "3004097831" @default.
- W3004097831 workType "article" @default.