Matches in SemOpenAlex for { <https://semopenalex.org/work/W3004371585> ?p ?o ?g. }
- W3004371585 endingPage "14" @default.
- W3004371585 startingPage "14" @default.
- W3004371585 abstract "Traumatic brain injuries may cause intracranial hemorrhages (ICH). ICH could lead to disability or death if it is not accurately diagnosed and treated in a time-sensitive procedure. The current clinical protocol to diagnose ICH is examining Computerized Tomography (CT) scans by radiologists to detect ICH and localize its regions. However, this process relies heavily on the availability of an experienced radiologist. In this paper, we designed a study protocol to collect a dataset of 82 CT scans of subjects with a traumatic brain injury. Next, the ICH regions were manually delineated in each slice by a consensus decision of two radiologists. The dataset is publicly available online at the PhysioNet repository for future analysis and comparisons. In addition to publishing the dataset, which is the main purpose of this manuscript, we implemented a deep Fully Convolutional Networks (FCNs), known as U-Net, to segment the ICH regions from the CT scans in a fully-automated manner. The method as a proof of concept achieved a Dice coefficient of 0.31 for the ICH segmentation based on 5-fold cross-validation." @default.
- W3004371585 created "2020-02-07" @default.
- W3004371585 creator A5021220062 @default.
- W3004371585 creator A5032994571 @default.
- W3004371585 creator A5041375512 @default.
- W3004371585 creator A5051940127 @default.
- W3004371585 creator A5060538205 @default.
- W3004371585 creator A5070947197 @default.
- W3004371585 date "2020-02-01" @default.
- W3004371585 modified "2023-10-10" @default.
- W3004371585 title "Intracranial Hemorrhage Segmentation Using a Deep Convolutional Model" @default.
- W3004371585 cites W1974327622 @default.
- W3004371585 cites W1975834173 @default.
- W3004371585 cites W1982123972 @default.
- W3004371585 cites W1991964403 @default.
- W3004371585 cites W2003561168 @default.
- W3004371585 cites W2016769329 @default.
- W3004371585 cites W2030553528 @default.
- W3004371585 cites W2099511727 @default.
- W3004371585 cites W2136587148 @default.
- W3004371585 cites W2162800060 @default.
- W3004371585 cites W2201728905 @default.
- W3004371585 cites W2224247781 @default.
- W3004371585 cites W2588271337 @default.
- W3004371585 cites W2592929672 @default.
- W3004371585 cites W2595085771 @default.
- W3004371585 cites W2725984455 @default.
- W3004371585 cites W2795774310 @default.
- W3004371585 cites W2883545264 @default.
- W3004371585 cites W2896817483 @default.
- W3004371585 cites W2898842944 @default.
- W3004371585 cites W2905307056 @default.
- W3004371585 cites W2911997543 @default.
- W3004371585 cites W2941578761 @default.
- W3004371585 cites W2943644689 @default.
- W3004371585 doi "https://doi.org/10.3390/data5010014" @default.
- W3004371585 hasPublicationYear "2020" @default.
- W3004371585 type Work @default.
- W3004371585 sameAs 3004371585 @default.
- W3004371585 citedByCount "88" @default.
- W3004371585 countsByYear W30043715852020 @default.
- W3004371585 countsByYear W30043715852021 @default.
- W3004371585 countsByYear W30043715852022 @default.
- W3004371585 countsByYear W30043715852023 @default.
- W3004371585 crossrefType "journal-article" @default.
- W3004371585 hasAuthorship W3004371585A5021220062 @default.
- W3004371585 hasAuthorship W3004371585A5032994571 @default.
- W3004371585 hasAuthorship W3004371585A5041375512 @default.
- W3004371585 hasAuthorship W3004371585A5051940127 @default.
- W3004371585 hasAuthorship W3004371585A5060538205 @default.
- W3004371585 hasAuthorship W3004371585A5070947197 @default.
- W3004371585 hasBestOaLocation W30043715851 @default.
- W3004371585 hasConcept C118552586 @default.
- W3004371585 hasConcept C124504099 @default.
- W3004371585 hasConcept C126838900 @default.
- W3004371585 hasConcept C142724271 @default.
- W3004371585 hasConcept C154945302 @default.
- W3004371585 hasConcept C163892561 @default.
- W3004371585 hasConcept C204787440 @default.
- W3004371585 hasConcept C2780385302 @default.
- W3004371585 hasConcept C2781017439 @default.
- W3004371585 hasConcept C41008148 @default.
- W3004371585 hasConcept C544519230 @default.
- W3004371585 hasConcept C71924100 @default.
- W3004371585 hasConcept C81363708 @default.
- W3004371585 hasConcept C89600930 @default.
- W3004371585 hasConceptScore W3004371585C118552586 @default.
- W3004371585 hasConceptScore W3004371585C124504099 @default.
- W3004371585 hasConceptScore W3004371585C126838900 @default.
- W3004371585 hasConceptScore W3004371585C142724271 @default.
- W3004371585 hasConceptScore W3004371585C154945302 @default.
- W3004371585 hasConceptScore W3004371585C163892561 @default.
- W3004371585 hasConceptScore W3004371585C204787440 @default.
- W3004371585 hasConceptScore W3004371585C2780385302 @default.
- W3004371585 hasConceptScore W3004371585C2781017439 @default.
- W3004371585 hasConceptScore W3004371585C41008148 @default.
- W3004371585 hasConceptScore W3004371585C544519230 @default.
- W3004371585 hasConceptScore W3004371585C71924100 @default.
- W3004371585 hasConceptScore W3004371585C81363708 @default.
- W3004371585 hasConceptScore W3004371585C89600930 @default.
- W3004371585 hasIssue "1" @default.
- W3004371585 hasLocation W30043715851 @default.
- W3004371585 hasLocation W30043715852 @default.
- W3004371585 hasLocation W30043715853 @default.
- W3004371585 hasLocation W30043715854 @default.
- W3004371585 hasOpenAccess W3004371585 @default.
- W3004371585 hasPrimaryLocation W30043715851 @default.
- W3004371585 hasRelatedWork W2673946014 @default.
- W3004371585 hasRelatedWork W2769435486 @default.
- W3004371585 hasRelatedWork W2963940192 @default.
- W3004371585 hasRelatedWork W3007126806 @default.
- W3004371585 hasRelatedWork W3102253946 @default.
- W3004371585 hasRelatedWork W3144574764 @default.
- W3004371585 hasRelatedWork W3152950745 @default.
- W3004371585 hasRelatedWork W4200528772 @default.
- W3004371585 hasRelatedWork W4293211451 @default.
- W3004371585 hasRelatedWork W4308191152 @default.
- W3004371585 hasVolume "5" @default.