Matches in SemOpenAlex for { <https://semopenalex.org/work/W3004437357> ?p ?o ?g. }
- W3004437357 endingPage "e0228439" @default.
- W3004437357 startingPage "e0228439" @default.
- W3004437357 abstract "In recent years, the number of vulnerabilities discovered and publicly disclosed has shown a sharp upward trend. However, the value of exploitation of vulnerabilities varies for attackers, considering that only a small fraction of vulnerabilities are exploited. Therefore, the realization of quick exclusion of the non-exploitable vulnerabilities and optimal patch prioritization on limited resources has become imperative for organizations. Recent works using machine learning techniques predict exploited vulnerabilities by extracting features from open-source intelligence (OSINT). However, in the face of explosive growth of vulnerability information, there is room for improvement in the application of past methods to multiple threat intelligence. A more general method is needed to deal with various threat intelligence sources. Moreover, in previous methods, traditional text processing methods were used to deal with vulnerability related descriptions, which only grasped the static statistical characteristics but ignored the context and the meaning of the words of the text. To address these challenges, we propose an exploit prediction model, which is based on a combination of fastText and LightGBM algorithm and called fastEmbed. We replicate key portions of the state-of-the-art work of exploit prediction and use them as benchmark models. Our model outperforms the baseline model whether in terms of the generalization ability or the prediction ability without temporal intermixing with an average overall improvement of 6.283% by learning the embedding of vulnerability-related text on extremely imbalanced data sets. Besides, in terms of predicting the exploits in the wild, our model also outperforms the baseline model with an F1 measure of 0.586 on the minority class (33.577% improvement over the work using features from darkweb/deepweb). The results demonstrate that the model can improve the ability to describe the exploitability of vulnerabilities and predict exploits in the wild effectively." @default.
- W3004437357 created "2020-02-14" @default.
- W3004437357 creator A5003554962 @default.
- W3004437357 creator A5003561140 @default.
- W3004437357 creator A5007288633 @default.
- W3004437357 creator A5075394107 @default.
- W3004437357 date "2020-02-06" @default.
- W3004437357 modified "2023-10-16" @default.
- W3004437357 title "FastEmbed: Predicting vulnerability exploitation possibility based on ensemble machine learning algorithm" @default.
- W3004437357 cites W150078352 @default.
- W3004437357 cites W1603939896 @default.
- W3004437357 cites W1605288538 @default.
- W3004437357 cites W1832693441 @default.
- W3004437357 cites W1971733255 @default.
- W3004437357 cites W1985324839 @default.
- W3004437357 cites W199832099 @default.
- W3004437357 cites W2065890363 @default.
- W3004437357 cites W2099419573 @default.
- W3004437357 cites W2099454382 @default.
- W3004437357 cites W2103296475 @default.
- W3004437357 cites W2108246235 @default.
- W3004437357 cites W2110401754 @default.
- W3004437357 cites W2148143831 @default.
- W3004437357 cites W2241929320 @default.
- W3004437357 cites W2292425835 @default.
- W3004437357 cites W2493916176 @default.
- W3004437357 cites W2556126384 @default.
- W3004437357 cites W2619560268 @default.
- W3004437357 cites W2735150897 @default.
- W3004437357 cites W2774398706 @default.
- W3004437357 cites W2799123556 @default.
- W3004437357 cites W2808249021 @default.
- W3004437357 cites W2890914939 @default.
- W3004437357 cites W2899204848 @default.
- W3004437357 cites W2906845177 @default.
- W3004437357 cites W2911964244 @default.
- W3004437357 cites W3102673518 @default.
- W3004437357 cites W4239510810 @default.
- W3004437357 cites W4255466416 @default.
- W3004437357 doi "https://doi.org/10.1371/journal.pone.0228439" @default.
- W3004437357 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/7004314" @default.
- W3004437357 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/32027693" @default.
- W3004437357 hasPublicationYear "2020" @default.
- W3004437357 type Work @default.
- W3004437357 sameAs 3004437357 @default.
- W3004437357 citedByCount "38" @default.
- W3004437357 countsByYear W30044373572020 @default.
- W3004437357 countsByYear W30044373572021 @default.
- W3004437357 countsByYear W30044373572022 @default.
- W3004437357 countsByYear W30044373572023 @default.
- W3004437357 crossrefType "journal-article" @default.
- W3004437357 hasAuthorship W3004437357A5003554962 @default.
- W3004437357 hasAuthorship W3004437357A5003561140 @default.
- W3004437357 hasAuthorship W3004437357A5007288633 @default.
- W3004437357 hasAuthorship W3004437357A5075394107 @default.
- W3004437357 hasBestOaLocation W30044373571 @default.
- W3004437357 hasConcept C111368507 @default.
- W3004437357 hasConcept C119857082 @default.
- W3004437357 hasConcept C124101348 @default.
- W3004437357 hasConcept C12725497 @default.
- W3004437357 hasConcept C127313418 @default.
- W3004437357 hasConcept C13280743 @default.
- W3004437357 hasConcept C134306372 @default.
- W3004437357 hasConcept C151730666 @default.
- W3004437357 hasConcept C154945302 @default.
- W3004437357 hasConcept C165696696 @default.
- W3004437357 hasConcept C177148314 @default.
- W3004437357 hasConcept C185798385 @default.
- W3004437357 hasConcept C205649164 @default.
- W3004437357 hasConcept C26517878 @default.
- W3004437357 hasConcept C2779343474 @default.
- W3004437357 hasConcept C33923547 @default.
- W3004437357 hasConcept C38652104 @default.
- W3004437357 hasConcept C41008148 @default.
- W3004437357 hasConcept C45942800 @default.
- W3004437357 hasConcept C86803240 @default.
- W3004437357 hasConcept C95713431 @default.
- W3004437357 hasConceptScore W3004437357C111368507 @default.
- W3004437357 hasConceptScore W3004437357C119857082 @default.
- W3004437357 hasConceptScore W3004437357C124101348 @default.
- W3004437357 hasConceptScore W3004437357C12725497 @default.
- W3004437357 hasConceptScore W3004437357C127313418 @default.
- W3004437357 hasConceptScore W3004437357C13280743 @default.
- W3004437357 hasConceptScore W3004437357C134306372 @default.
- W3004437357 hasConceptScore W3004437357C151730666 @default.
- W3004437357 hasConceptScore W3004437357C154945302 @default.
- W3004437357 hasConceptScore W3004437357C165696696 @default.
- W3004437357 hasConceptScore W3004437357C177148314 @default.
- W3004437357 hasConceptScore W3004437357C185798385 @default.
- W3004437357 hasConceptScore W3004437357C205649164 @default.
- W3004437357 hasConceptScore W3004437357C26517878 @default.
- W3004437357 hasConceptScore W3004437357C2779343474 @default.
- W3004437357 hasConceptScore W3004437357C33923547 @default.
- W3004437357 hasConceptScore W3004437357C38652104 @default.
- W3004437357 hasConceptScore W3004437357C41008148 @default.
- W3004437357 hasConceptScore W3004437357C45942800 @default.
- W3004437357 hasConceptScore W3004437357C86803240 @default.
- W3004437357 hasConceptScore W3004437357C95713431 @default.