Matches in SemOpenAlex for { <https://semopenalex.org/work/W3004468049> ?p ?o ?g. }
- W3004468049 endingPage "3055" @default.
- W3004468049 startingPage "3049" @default.
- W3004468049 abstract "Abstract Motivation Blockade of the human ether-à-go-go-related gene (hERG) channel by small compounds causes a prolonged QT interval that can lead to severe cardiotoxicity and is a major cause of the many failures in drug development. Thus, evaluating the hERG-blocking activity of small compounds is important for successful drug development. To this end, various computational prediction tools have been developed, but their prediction performances in terms of sensitivity and negative predictive value (NPV) need to be improved to reduce false negative predictions. Results We propose a computational framework, DeepHIT, which predicts hERG blockers and non-blockers for input compounds. For the development of DeepHIT, we generated a large-scale gold-standard dataset, which includes 6632 hERG blockers and 7808 hERG non-blockers. DeepHIT is designed to contain three deep learning models to improve sensitivity and NPV, which, in turn, produce fewer false negative predictions. DeepHIT outperforms currently available tools in terms of accuracy (0.773), MCC (0.476), sensitivity (0.833) and NPV (0.643) on an external test dataset. We also developed an in silico chemical transformation module that generates virtual compounds from a seed compound, based on the known chemical transformation patterns. As a proof-of-concept study, we identified novel urotensin II receptor (UT) antagonists without hERG-blocking activity derived from a seed compound of a previously reported UT antagonist (KR-36676) with a strong hERG-blocking activity. In summary, DeepHIT will serve as a useful tool to predict hERG-induced cardiotoxicity of small compounds in the early stages of drug discovery and development. Availability and implementation https://bitbucket.org/krictai/deephit and https://bitbucket.org/krictai/chemtrans Supplementary information Supplementary data are available at Bioinformatics online." @default.
- W3004468049 created "2020-02-14" @default.
- W3004468049 creator A5007703910 @default.
- W3004468049 creator A5044144622 @default.
- W3004468049 creator A5046281685 @default.
- W3004468049 creator A5054096882 @default.
- W3004468049 creator A5062409192 @default.
- W3004468049 date "2020-02-05" @default.
- W3004468049 modified "2023-10-17" @default.
- W3004468049 title "DeepHIT: a deep learning framework for prediction of hERG-induced cardiotoxicity" @default.
- W3004468049 cites W1508883803 @default.
- W3004468049 cites W1968098810 @default.
- W3004468049 cites W1973673666 @default.
- W3004468049 cites W1988037271 @default.
- W3004468049 cites W1991739064 @default.
- W3004468049 cites W2011178741 @default.
- W3004468049 cites W2025538419 @default.
- W3004468049 cites W2038481443 @default.
- W3004468049 cites W2082987340 @default.
- W3004468049 cites W2093313266 @default.
- W3004468049 cites W2095229625 @default.
- W3004468049 cites W2096541451 @default.
- W3004468049 cites W2113927644 @default.
- W3004468049 cites W2130566541 @default.
- W3004468049 cites W2160305962 @default.
- W3004468049 cites W2160592148 @default.
- W3004468049 cites W2204695023 @default.
- W3004468049 cites W2516568534 @default.
- W3004468049 cites W2538276222 @default.
- W3004468049 cites W2584320157 @default.
- W3004468049 cites W2752149732 @default.
- W3004468049 cites W2791355014 @default.
- W3004468049 cites W2794498378 @default.
- W3004468049 cites W2890733421 @default.
- W3004468049 cites W2914969288 @default.
- W3004468049 cites W2919115771 @default.
- W3004468049 cites W2947920041 @default.
- W3004468049 doi "https://doi.org/10.1093/bioinformatics/btaa075" @default.
- W3004468049 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/32022860" @default.
- W3004468049 hasPublicationYear "2020" @default.
- W3004468049 type Work @default.
- W3004468049 sameAs 3004468049 @default.
- W3004468049 citedByCount "42" @default.
- W3004468049 countsByYear W30044680492020 @default.
- W3004468049 countsByYear W30044680492021 @default.
- W3004468049 countsByYear W30044680492022 @default.
- W3004468049 countsByYear W30044680492023 @default.
- W3004468049 crossrefType "journal-article" @default.
- W3004468049 hasAuthorship W3004468049A5007703910 @default.
- W3004468049 hasAuthorship W3004468049A5044144622 @default.
- W3004468049 hasAuthorship W3004468049A5046281685 @default.
- W3004468049 hasAuthorship W3004468049A5054096882 @default.
- W3004468049 hasAuthorship W3004468049A5062409192 @default.
- W3004468049 hasConcept C104317684 @default.
- W3004468049 hasConcept C118441451 @default.
- W3004468049 hasConcept C119857082 @default.
- W3004468049 hasConcept C126322002 @default.
- W3004468049 hasConcept C127413603 @default.
- W3004468049 hasConcept C144745244 @default.
- W3004468049 hasConcept C185592680 @default.
- W3004468049 hasConcept C21200559 @default.
- W3004468049 hasConcept C24326235 @default.
- W3004468049 hasConcept C2775905019 @default.
- W3004468049 hasConcept C2778233292 @default.
- W3004468049 hasConcept C2779362680 @default.
- W3004468049 hasConcept C2780035454 @default.
- W3004468049 hasConcept C29730261 @default.
- W3004468049 hasConcept C31258907 @default.
- W3004468049 hasConcept C41008148 @default.
- W3004468049 hasConcept C55493867 @default.
- W3004468049 hasConcept C64903051 @default.
- W3004468049 hasConcept C70721500 @default.
- W3004468049 hasConcept C71924100 @default.
- W3004468049 hasConcept C83743174 @default.
- W3004468049 hasConcept C86803240 @default.
- W3004468049 hasConcept C98274493 @default.
- W3004468049 hasConceptScore W3004468049C104317684 @default.
- W3004468049 hasConceptScore W3004468049C118441451 @default.
- W3004468049 hasConceptScore W3004468049C119857082 @default.
- W3004468049 hasConceptScore W3004468049C126322002 @default.
- W3004468049 hasConceptScore W3004468049C127413603 @default.
- W3004468049 hasConceptScore W3004468049C144745244 @default.
- W3004468049 hasConceptScore W3004468049C185592680 @default.
- W3004468049 hasConceptScore W3004468049C21200559 @default.
- W3004468049 hasConceptScore W3004468049C24326235 @default.
- W3004468049 hasConceptScore W3004468049C2775905019 @default.
- W3004468049 hasConceptScore W3004468049C2778233292 @default.
- W3004468049 hasConceptScore W3004468049C2779362680 @default.
- W3004468049 hasConceptScore W3004468049C2780035454 @default.
- W3004468049 hasConceptScore W3004468049C29730261 @default.
- W3004468049 hasConceptScore W3004468049C31258907 @default.
- W3004468049 hasConceptScore W3004468049C41008148 @default.
- W3004468049 hasConceptScore W3004468049C55493867 @default.
- W3004468049 hasConceptScore W3004468049C64903051 @default.
- W3004468049 hasConceptScore W3004468049C70721500 @default.
- W3004468049 hasConceptScore W3004468049C71924100 @default.
- W3004468049 hasConceptScore W3004468049C83743174 @default.
- W3004468049 hasConceptScore W3004468049C86803240 @default.