Matches in SemOpenAlex for { <https://semopenalex.org/work/W3004581511> ?p ?o ?g. }
- W3004581511 endingPage "107576" @default.
- W3004581511 startingPage "107576" @default.
- W3004581511 abstract "Due to the vital significance of precise determination of soil shear strength (SSS) in many civil engineering projects, this study is dedicated to proposing novel intelligent models for estimating this parameter. To this end, elephant herding optimization (EHO), shuffled frog leaping algorithm (SFLA), salp swarm algorithm (SSA), and wind-driven optimization (WDO) are synthesized with artificial neural network (ANN) to create neural ensembles. The results indicated the efficiency of metaheuristic science for dealing with the non-linear analysis of the SSS and influential soil parameters. Also, a comparison between the models revealed that the SSA-MLP (Error = 0.0386 and Correlation = 0.8219) presents the most efficient prediction, followed by WDO-MLP (Error = 0.0403 and Correlation = 0.8025), SFLA-MLP (Error = 0.0408 and Correlation = 0.7559), and EHO-MLP (Error = 0.0436 and Correlation = 0.7195). Therefore, the proposed SSA-MLP can function as a reliable substitute for traditional approaches in prediction of the SSS." @default.
- W3004581511 created "2020-02-14" @default.
- W3004581511 creator A5003742461 @default.
- W3004581511 creator A5011040729 @default.
- W3004581511 creator A5011128792 @default.
- W3004581511 creator A5070855448 @default.
- W3004581511 creator A5076352077 @default.
- W3004581511 creator A5080655046 @default.
- W3004581511 date "2020-05-01" @default.
- W3004581511 modified "2023-09-23" @default.
- W3004581511 title "Hybridizing four wise neural-metaheuristic paradigms in predicting soil shear strength" @default.
- W3004581511 cites W1965779198 @default.
- W3004581511 cites W1983023737 @default.
- W3004581511 cites W1993231573 @default.
- W3004581511 cites W1995341919 @default.
- W3004581511 cites W1995816508 @default.
- W3004581511 cites W2019154419 @default.
- W3004581511 cites W2022550081 @default.
- W3004581511 cites W2029056188 @default.
- W3004581511 cites W2077321525 @default.
- W3004581511 cites W2078220367 @default.
- W3004581511 cites W2090753062 @default.
- W3004581511 cites W2106905228 @default.
- W3004581511 cites W2117665539 @default.
- W3004581511 cites W2137983211 @default.
- W3004581511 cites W2194451028 @default.
- W3004581511 cites W2475625449 @default.
- W3004581511 cites W2499589001 @default.
- W3004581511 cites W2541451878 @default.
- W3004581511 cites W2557211310 @default.
- W3004581511 cites W2557211773 @default.
- W3004581511 cites W2606466198 @default.
- W3004581511 cites W2621028994 @default.
- W3004581511 cites W2738033411 @default.
- W3004581511 cites W2738900493 @default.
- W3004581511 cites W2743422588 @default.
- W3004581511 cites W2746706136 @default.
- W3004581511 cites W2748143806 @default.
- W3004581511 cites W2770550875 @default.
- W3004581511 cites W2778006945 @default.
- W3004581511 cites W2801536506 @default.
- W3004581511 cites W2808327663 @default.
- W3004581511 cites W2884377959 @default.
- W3004581511 cites W2890028683 @default.
- W3004581511 cites W2895224823 @default.
- W3004581511 cites W2900736700 @default.
- W3004581511 cites W2901654626 @default.
- W3004581511 cites W2914849198 @default.
- W3004581511 cites W2944702838 @default.
- W3004581511 cites W2945388506 @default.
- W3004581511 cites W2956063159 @default.
- W3004581511 cites W2965746779 @default.
- W3004581511 cites W2966317278 @default.
- W3004581511 cites W2966875474 @default.
- W3004581511 cites W2969141309 @default.
- W3004581511 cites W2971706201 @default.
- W3004581511 cites W2973814487 @default.
- W3004581511 cites W2975108999 @default.
- W3004581511 cites W2978016765 @default.
- W3004581511 cites W2981198699 @default.
- W3004581511 cites W2982365055 @default.
- W3004581511 cites W2982801070 @default.
- W3004581511 cites W2983873244 @default.
- W3004581511 cites W2985878535 @default.
- W3004581511 cites W2986307427 @default.
- W3004581511 cites W2988589825 @default.
- W3004581511 cites W2994408302 @default.
- W3004581511 cites W2995554982 @default.
- W3004581511 cites W3000398335 @default.
- W3004581511 cites W3018770027 @default.
- W3004581511 doi "https://doi.org/10.1016/j.measurement.2020.107576" @default.
- W3004581511 hasPublicationYear "2020" @default.
- W3004581511 type Work @default.
- W3004581511 sameAs 3004581511 @default.
- W3004581511 citedByCount "29" @default.
- W3004581511 countsByYear W30045815112020 @default.
- W3004581511 countsByYear W30045815112021 @default.
- W3004581511 countsByYear W30045815112022 @default.
- W3004581511 countsByYear W30045815112023 @default.
- W3004581511 crossrefType "journal-article" @default.
- W3004581511 hasAuthorship W3004581511A5003742461 @default.
- W3004581511 hasAuthorship W3004581511A5011040729 @default.
- W3004581511 hasAuthorship W3004581511A5011128792 @default.
- W3004581511 hasAuthorship W3004581511A5070855448 @default.
- W3004581511 hasAuthorship W3004581511A5076352077 @default.
- W3004581511 hasAuthorship W3004581511A5080655046 @default.
- W3004581511 hasConcept C109718341 @default.
- W3004581511 hasConcept C127413603 @default.
- W3004581511 hasConcept C148699463 @default.
- W3004581511 hasConcept C154945302 @default.
- W3004581511 hasConcept C186060115 @default.
- W3004581511 hasConcept C41008148 @default.
- W3004581511 hasConcept C50644808 @default.
- W3004581511 hasConcept C86803240 @default.
- W3004581511 hasConceptScore W3004581511C109718341 @default.
- W3004581511 hasConceptScore W3004581511C127413603 @default.
- W3004581511 hasConceptScore W3004581511C148699463 @default.
- W3004581511 hasConceptScore W3004581511C154945302 @default.