Matches in SemOpenAlex for { <https://semopenalex.org/work/W3004635547> ?p ?o ?g. }
- W3004635547 endingPage "43897" @default.
- W3004635547 startingPage "43888" @default.
- W3004635547 abstract "In wireless communication, modulation classification is an important part of the non-cooperative communication, and it is difficult to classify the various modulation schemes using conventional methods. The deep learning network has been used to handle the problem and acquire good results. In the deep convolutional neural network (CNN), the data length in the input is fixed. However, the signal length varies in communication, and it causes that the network cannot take advantage of the input signal data to improve the classification accuracy. In this paper, a novel deep network method using a multi-stream structure is proposed. The multi-stream network form increases the network width, and enriches the types of signal features extracted. The superposition convolutional unit in each stream can further improve the classification performance, while the shallower network form is easier to train for avoiding the over-fitting problem. Further, we show that the proposed method can learn more features of the signal data, and it is also shown to be superior to common deep networks." @default.
- W3004635547 created "2020-02-14" @default.
- W3004635547 creator A5003642180 @default.
- W3004635547 creator A5017674577 @default.
- W3004635547 creator A5035133764 @default.
- W3004635547 creator A5049341927 @default.
- W3004635547 creator A5067556564 @default.
- W3004635547 date "2020-01-01" @default.
- W3004635547 modified "2023-10-17" @default.
- W3004635547 title "Automatic Modulation Classification Using a Deep Multi-Stream Neural Network" @default.
- W3004635547 cites W1520508279 @default.
- W3004635547 cites W2015234197 @default.
- W3004635547 cites W2125242600 @default.
- W3004635547 cites W2126087318 @default.
- W3004635547 cites W2137034992 @default.
- W3004635547 cites W2146514432 @default.
- W3004635547 cites W2162844151 @default.
- W3004635547 cites W2163277945 @default.
- W3004635547 cites W2194775991 @default.
- W3004635547 cites W2279025312 @default.
- W3004635547 cites W2342475147 @default.
- W3004635547 cites W2344757723 @default.
- W3004635547 cites W2549139847 @default.
- W3004635547 cites W2599270239 @default.
- W3004635547 cites W2612336410 @default.
- W3004635547 cites W2612824601 @default.
- W3004635547 cites W2616867685 @default.
- W3004635547 cites W2735161803 @default.
- W3004635547 cites W2742899112 @default.
- W3004635547 cites W2749908420 @default.
- W3004635547 cites W2752291283 @default.
- W3004635547 cites W2770506079 @default.
- W3004635547 cites W2784064571 @default.
- W3004635547 cites W2790896200 @default.
- W3004635547 cites W2810871807 @default.
- W3004635547 cites W2883780447 @default.
- W3004635547 cites W2893903145 @default.
- W3004635547 cites W2919115771 @default.
- W3004635547 cites W2962956060 @default.
- W3004635547 cites W2963446712 @default.
- W3004635547 cites W2963577893 @default.
- W3004635547 cites W3105650387 @default.
- W3004635547 doi "https://doi.org/10.1109/access.2020.2971698" @default.
- W3004635547 hasPublicationYear "2020" @default.
- W3004635547 type Work @default.
- W3004635547 sameAs 3004635547 @default.
- W3004635547 citedByCount "20" @default.
- W3004635547 countsByYear W30046355472020 @default.
- W3004635547 countsByYear W30046355472021 @default.
- W3004635547 countsByYear W30046355472022 @default.
- W3004635547 countsByYear W30046355472023 @default.
- W3004635547 crossrefType "journal-article" @default.
- W3004635547 hasAuthorship W3004635547A5003642180 @default.
- W3004635547 hasAuthorship W3004635547A5017674577 @default.
- W3004635547 hasAuthorship W3004635547A5035133764 @default.
- W3004635547 hasAuthorship W3004635547A5049341927 @default.
- W3004635547 hasAuthorship W3004635547A5067556564 @default.
- W3004635547 hasBestOaLocation W30046355471 @default.
- W3004635547 hasConcept C107038049 @default.
- W3004635547 hasConcept C108583219 @default.
- W3004635547 hasConcept C123079801 @default.
- W3004635547 hasConcept C124101348 @default.
- W3004635547 hasConcept C127162648 @default.
- W3004635547 hasConcept C138885662 @default.
- W3004635547 hasConcept C153180895 @default.
- W3004635547 hasConcept C154945302 @default.
- W3004635547 hasConcept C199360897 @default.
- W3004635547 hasConcept C2778484313 @default.
- W3004635547 hasConcept C2779843651 @default.
- W3004635547 hasConcept C41008148 @default.
- W3004635547 hasConcept C50644808 @default.
- W3004635547 hasConcept C76155785 @default.
- W3004635547 hasConcept C81363708 @default.
- W3004635547 hasConceptScore W3004635547C107038049 @default.
- W3004635547 hasConceptScore W3004635547C108583219 @default.
- W3004635547 hasConceptScore W3004635547C123079801 @default.
- W3004635547 hasConceptScore W3004635547C124101348 @default.
- W3004635547 hasConceptScore W3004635547C127162648 @default.
- W3004635547 hasConceptScore W3004635547C138885662 @default.
- W3004635547 hasConceptScore W3004635547C153180895 @default.
- W3004635547 hasConceptScore W3004635547C154945302 @default.
- W3004635547 hasConceptScore W3004635547C199360897 @default.
- W3004635547 hasConceptScore W3004635547C2778484313 @default.
- W3004635547 hasConceptScore W3004635547C2779843651 @default.
- W3004635547 hasConceptScore W3004635547C41008148 @default.
- W3004635547 hasConceptScore W3004635547C50644808 @default.
- W3004635547 hasConceptScore W3004635547C76155785 @default.
- W3004635547 hasConceptScore W3004635547C81363708 @default.
- W3004635547 hasFunder F4320321001 @default.
- W3004635547 hasFunder F4320324174 @default.
- W3004635547 hasFunder F4320326721 @default.
- W3004635547 hasFunder F4320335675 @default.
- W3004635547 hasFunder F4320335787 @default.
- W3004635547 hasLocation W30046355471 @default.
- W3004635547 hasOpenAccess W3004635547 @default.
- W3004635547 hasPrimaryLocation W30046355471 @default.
- W3004635547 hasRelatedWork W2731899572 @default.
- W3004635547 hasRelatedWork W2732542196 @default.