Matches in SemOpenAlex for { <https://semopenalex.org/work/W3004649270> ?p ?o ?g. }
- W3004649270 endingPage "124663" @default.
- W3004649270 startingPage "124663" @default.
- W3004649270 abstract "Rainfall-runoff simulations are increasingly being performed with physically-based and spatially distributed solvers. The current computational and numerical technology enables the use of full shallow water equations solvers to be applied for these type of flow problems. Nonetheless, Zero-Inertia (diffusive wave) solvers have been historically favoured due to their conceptual and mathematical simplicity in comparison to shallow water solvers, with the working assumption that the simplifications introduced by Zero-Inertia will have some assumable impact on accuracy but will also allow for computational efficiency. Since both types of solvers have been primarily developed, benchmarked and compared to each other for fluvial and floodplain simulations, it is relevant to assess t-he relative performance for rainfall-runoff problems. In this work, both solvers are applied to a set of six well known test cases with reference solutions. The performance of the solvers is assessed in terms of global signatures such as hydrographs and flooded areas, but also in terms of spatial distributions of depth and velocity, as well as computational cost. Furthermore, the comparisons are performed across different spatial resolutions. The results show that for rainfall-runoff problems explicit, finite volumes solvers for both equations provide a similar accuracy, but the shallow water solver requires less computational time. The Zero-Inertia solver was found to be less sensitive to mesh refining than the full shallow water solver." @default.
- W3004649270 created "2020-02-14" @default.
- W3004649270 creator A5033074757 @default.
- W3004649270 creator A5050840412 @default.
- W3004649270 creator A5073769579 @default.
- W3004649270 date "2020-05-01" @default.
- W3004649270 modified "2023-10-16" @default.
- W3004649270 title "Performance assessment of 2D Zero-Inertia and Shallow Water models for simulating rainfall-runoff processes" @default.
- W3004649270 cites W1091557919 @default.
- W3004649270 cites W1139385156 @default.
- W3004649270 cites W1489688708 @default.
- W3004649270 cites W1576389639 @default.
- W3004649270 cites W1718663697 @default.
- W3004649270 cites W1830585016 @default.
- W3004649270 cites W1941098055 @default.
- W3004649270 cites W1971520515 @default.
- W3004649270 cites W1989157909 @default.
- W3004649270 cites W1999098265 @default.
- W3004649270 cites W2010527919 @default.
- W3004649270 cites W2016354072 @default.
- W3004649270 cites W2023458376 @default.
- W3004649270 cites W2031441966 @default.
- W3004649270 cites W2037187959 @default.
- W3004649270 cites W2043140308 @default.
- W3004649270 cites W2050901580 @default.
- W3004649270 cites W2051564884 @default.
- W3004649270 cites W2054631580 @default.
- W3004649270 cites W2055668893 @default.
- W3004649270 cites W2056148217 @default.
- W3004649270 cites W2059475753 @default.
- W3004649270 cites W2059825725 @default.
- W3004649270 cites W2060138813 @default.
- W3004649270 cites W2064184119 @default.
- W3004649270 cites W2064963899 @default.
- W3004649270 cites W2065057315 @default.
- W3004649270 cites W2067385843 @default.
- W3004649270 cites W2070536400 @default.
- W3004649270 cites W2076372349 @default.
- W3004649270 cites W2078591521 @default.
- W3004649270 cites W2079891231 @default.
- W3004649270 cites W2082655554 @default.
- W3004649270 cites W2088915086 @default.
- W3004649270 cites W2090665907 @default.
- W3004649270 cites W2093470695 @default.
- W3004649270 cites W2099566964 @default.
- W3004649270 cites W2101044141 @default.
- W3004649270 cites W2104561975 @default.
- W3004649270 cites W2107308245 @default.
- W3004649270 cites W2111456289 @default.
- W3004649270 cites W2125577107 @default.
- W3004649270 cites W2133313120 @default.
- W3004649270 cites W2140139165 @default.
- W3004649270 cites W2144221821 @default.
- W3004649270 cites W2147771508 @default.
- W3004649270 cites W2151251491 @default.
- W3004649270 cites W2159248218 @default.
- W3004649270 cites W2166309152 @default.
- W3004649270 cites W2180404242 @default.
- W3004649270 cites W2265911804 @default.
- W3004649270 cites W2298178723 @default.
- W3004649270 cites W2321814559 @default.
- W3004649270 cites W2346503125 @default.
- W3004649270 cites W2460207125 @default.
- W3004649270 cites W2463319438 @default.
- W3004649270 cites W2477121840 @default.
- W3004649270 cites W2503675925 @default.
- W3004649270 cites W2505557217 @default.
- W3004649270 cites W2538014784 @default.
- W3004649270 cites W2557700663 @default.
- W3004649270 cites W2564026245 @default.
- W3004649270 cites W2566676437 @default.
- W3004649270 cites W2570787575 @default.
- W3004649270 cites W2582593191 @default.
- W3004649270 cites W2593388048 @default.
- W3004649270 cites W2747444827 @default.
- W3004649270 cites W2770676950 @default.
- W3004649270 cites W2771024073 @default.
- W3004649270 cites W2791079900 @default.
- W3004649270 cites W2792855190 @default.
- W3004649270 cites W2807843437 @default.
- W3004649270 cites W2884733470 @default.
- W3004649270 cites W2887226523 @default.
- W3004649270 cites W2889991468 @default.
- W3004649270 cites W2890500711 @default.
- W3004649270 cites W2907909982 @default.
- W3004649270 cites W2925013667 @default.
- W3004649270 cites W2955916926 @default.
- W3004649270 cites W2957990330 @default.
- W3004649270 cites W880756351 @default.
- W3004649270 doi "https://doi.org/10.1016/j.jhydrol.2020.124663" @default.
- W3004649270 hasPublicationYear "2020" @default.
- W3004649270 type Work @default.
- W3004649270 sameAs 3004649270 @default.
- W3004649270 citedByCount "32" @default.
- W3004649270 countsByYear W30046492702020 @default.
- W3004649270 countsByYear W30046492702021 @default.
- W3004649270 countsByYear W30046492702022 @default.
- W3004649270 countsByYear W30046492702023 @default.