Matches in SemOpenAlex for { <https://semopenalex.org/work/W3004783284> ?p ?o ?g. }
- W3004783284 endingPage "104529" @default.
- W3004783284 startingPage "104529" @default.
- W3004783284 abstract "An understanding of the long-term reactivity of different rock types to injected CO2 is needed for sequestration site assessment. Relative to saline aquifer studies, the long term reactivity of CO2 in low salinity aquifers has received little attention. Currently in Australia, the Surat Basin is being appraised for its large-scale CO2 storage potential within low salinity aquifers. Sixteen core samples from the Precipice Sandstone and Evergreen Formation – the notional target reservoir and seal complex – were characterized for mineral content; helium, mercury-injection and micro CT porosities; air permeability; and, imaged with SEM-EDS. Samples consisted of quartz rich reservoir sandstones, feldspar and clay rich or calcite cemented sandstones (secondary reservoir), mudstones (sealing complex), and oolitic ironstones (sealing complex) derived from braided river, fluvial-deltaic, and restricted marine shoal depositional environments, respectively. The reservoir sandstone samples characterized here had measured total porosity that ranged from 11 to 23% with pore throats mainly between 90 and 100 μm, and core air permeability from 558 to 3397 mD. In the Precipice Sandstone reservoir sample μCT plugs, 98% of the pore space was connected with calculated vertical permeability 145–4611 mD and horizontal 4291–8200 mD. Feldspar and clay rich sandstone and mudstone samples from the overlying Evergreen Formation had porosity that ranged between 0.2 and 22.9%, with a wide range of pore throat sizes from ~0.005 to 30 μm, and permeability from 0.2 to 28.1 mD, respectively. Ironstone and mudstone samples from the Westgrove Ironstone Member (Evergreen Formation) had porosity from 0.7 to 9.7% and a low permeability of 0.04 mD. Kinetic geochemical CO2 reactivity models made predictions over two time-scales: 30 or 1000 years. Selected models also accounted for the potential presence of 10 ppm SO2 gas. The Precipice Sandstone quartz-rich reservoir sandstones had consistently small amounts of reactive minerals and mineral trapping or scaling of the reservoir was not predicted over 30 years, with the pH approximately 4.5 after 30 years. Samples from the Evergreen Formation included feldspar and clay rich sandstones and mudstones, several contained variable amounts of carbonate cement. Their response to CO2 was more influenced by mineral content than rock type. Plagioclase feldspars and Fe-rich chlorite were the main silicate minerals that reacted to produce siderite and ankerite mineral trapping up to 2.57 kg/m3 CO2. In the very unlikely event that CO2 rich fluids migrated upwards as far as the Westgrove Ironstone Member, chlorite is predicted to alter to siderite. This study indicates that the Precipice Sandstone reservoir in the study region has a low likelihood of mineral scaling which is favorable to avoid CO2 injectivity issues. Mineral trapping as ankerite and siderite could be expected to trap CO2 in the chlorite and plagioclase rich Evergreen Formation seal lithologies. Further work is suggested on validating long term predictions with observation data from natural analogue studies." @default.
- W3004783284 created "2020-02-14" @default.
- W3004783284 creator A5001477466 @default.
- W3004783284 creator A5046641260 @default.
- W3004783284 creator A5068039658 @default.
- W3004783284 creator A5089277700 @default.
- W3004783284 date "2020-03-01" @default.
- W3004783284 modified "2023-09-30" @default.
- W3004783284 title "Long term reactivity of CO2 in a low salinity reservoir-seal complex" @default.
- W3004783284 cites W1510038797 @default.
- W3004783284 cites W1967119082 @default.
- W3004783284 cites W1968670931 @default.
- W3004783284 cites W1975917094 @default.
- W3004783284 cites W1977912344 @default.
- W3004783284 cites W1983155242 @default.
- W3004783284 cites W1996074021 @default.
- W3004783284 cites W2000583490 @default.
- W3004783284 cites W2000867659 @default.
- W3004783284 cites W2001586232 @default.
- W3004783284 cites W2010940821 @default.
- W3004783284 cites W2011257003 @default.
- W3004783284 cites W2017833723 @default.
- W3004783284 cites W2019350506 @default.
- W3004783284 cites W2022767769 @default.
- W3004783284 cites W2033838144 @default.
- W3004783284 cites W2042783687 @default.
- W3004783284 cites W2045581122 @default.
- W3004783284 cites W2048428364 @default.
- W3004783284 cites W2048747164 @default.
- W3004783284 cites W2055237546 @default.
- W3004783284 cites W2057078620 @default.
- W3004783284 cites W2057534724 @default.
- W3004783284 cites W2062229561 @default.
- W3004783284 cites W2063847231 @default.
- W3004783284 cites W2064572976 @default.
- W3004783284 cites W2067268593 @default.
- W3004783284 cites W2069250865 @default.
- W3004783284 cites W2071713493 @default.
- W3004783284 cites W2072102615 @default.
- W3004783284 cites W2076857865 @default.
- W3004783284 cites W2078946616 @default.
- W3004783284 cites W2081423026 @default.
- W3004783284 cites W2093832839 @default.
- W3004783284 cites W2096448377 @default.
- W3004783284 cites W2113888807 @default.
- W3004783284 cites W2124309295 @default.
- W3004783284 cites W2126820166 @default.
- W3004783284 cites W2154492036 @default.
- W3004783284 cites W2222617040 @default.
- W3004783284 cites W2224103689 @default.
- W3004783284 cites W2323332857 @default.
- W3004783284 cites W2412815102 @default.
- W3004783284 cites W2419142277 @default.
- W3004783284 cites W2481762734 @default.
- W3004783284 cites W2521914374 @default.
- W3004783284 cites W2547141112 @default.
- W3004783284 cites W2576924630 @default.
- W3004783284 cites W2740619812 @default.
- W3004783284 cites W2768521166 @default.
- W3004783284 cites W2772773292 @default.
- W3004783284 cites W2810408051 @default.
- W3004783284 cites W2889082514 @default.
- W3004783284 cites W2900720963 @default.
- W3004783284 cites W2914016974 @default.
- W3004783284 cites W2955701140 @default.
- W3004783284 cites W2967840570 @default.
- W3004783284 cites W4232305988 @default.
- W3004783284 cites W562042183 @default.
- W3004783284 doi "https://doi.org/10.1016/j.apgeochem.2020.104529" @default.
- W3004783284 hasPublicationYear "2020" @default.
- W3004783284 type Work @default.
- W3004783284 sameAs 3004783284 @default.
- W3004783284 citedByCount "14" @default.
- W3004783284 countsByYear W30047832842021 @default.
- W3004783284 countsByYear W30047832842022 @default.
- W3004783284 countsByYear W30047832842023 @default.
- W3004783284 crossrefType "journal-article" @default.
- W3004783284 hasAuthorship W3004783284A5001477466 @default.
- W3004783284 hasAuthorship W3004783284A5046641260 @default.
- W3004783284 hasAuthorship W3004783284A5068039658 @default.
- W3004783284 hasAuthorship W3004783284A5089277700 @default.
- W3004783284 hasConcept C109007969 @default.
- W3004783284 hasConcept C112959462 @default.
- W3004783284 hasConcept C114793014 @default.
- W3004783284 hasConcept C127313418 @default.
- W3004783284 hasConcept C130452526 @default.
- W3004783284 hasConcept C151730666 @default.
- W3004783284 hasConcept C17409809 @default.
- W3004783284 hasConcept C187320778 @default.
- W3004783284 hasConcept C199289684 @default.
- W3004783284 hasConcept C2778520076 @default.
- W3004783284 hasConcept C2778572594 @default.
- W3004783284 hasConcept C2779870107 @default.
- W3004783284 hasConcept C2780191791 @default.
- W3004783284 hasConcept C75622301 @default.
- W3004783284 hasConcept C76177295 @default.
- W3004783284 hasConceptScore W3004783284C109007969 @default.
- W3004783284 hasConceptScore W3004783284C112959462 @default.