Matches in SemOpenAlex for { <https://semopenalex.org/work/W3004789324> ?p ?o ?g. }
Showing items 1 to 88 of
88
with 100 items per page.
- W3004789324 endingPage "113271" @default.
- W3004789324 startingPage "113271" @default.
- W3004789324 abstract "Deep neural networks are potentially suitable tools for time series forecasting due to their ability to extract complex patterns of nonlinear data and their versatility in terms of models and applications. Even though they are powerful instruments and well-behaved approaches for certain tasks, they are sometimes surpassed by data complexity, and thus struggle to find an error that generalizes well enough on unseen data, especially in cases like times series forecasting for stock trading strategies. In this paper, the complex characteristics of time series are addressed by separating data by means of simpler yet more relevant distinctions in order to create a single model for every existing or created category, with a focus on model validation. This creates models which are trained on the same data, but validated for a particular class so that the models’ hyperparameters are specifically tuned to that class. Experiments on convolutional networks applied to the DJIA, Nasdaq and S&P 500 indices using volatility as a class or category indicator, have shown that it is possible to improve predictions after validating the model, obtaining the best model per the Model Confidence Set among different regression models on all time series datasets. Even the best and only model necessary for the DJIA and S&P 500 indices can be obtained at a significance value of 5% given that the level of volatility is known. The results highlight the importance of knowing the data and how to potentially separate them into simpler yet relevant classes. The results also reveal how model validation on different data is capable of creating models that better explain information just by tuning the model’s architectural hyperparameters, even though the models where trained on the very same data. This finding could be applied to any task requiring validation without modifying the training set, which is usually bigger and more expensive to obtain." @default.
- W3004789324 created "2020-02-14" @default.
- W3004789324 creator A5017240551 @default.
- W3004789324 creator A5089672928 @default.
- W3004789324 date "2020-07-01" @default.
- W3004789324 modified "2023-10-16" @default.
- W3004789324 title "Effects of the validation set on stock returns forecasting" @default.
- W3004789324 cites W1981780459 @default.
- W3004789324 cites W2000399775 @default.
- W3004789324 cites W2016210396 @default.
- W3004789324 cites W2025291942 @default.
- W3004789324 cites W2026430219 @default.
- W3004789324 cites W2032270307 @default.
- W3004789324 cites W2032927332 @default.
- W3004789324 cites W2042506099 @default.
- W3004789324 cites W2064675550 @default.
- W3004789324 cites W2070808135 @default.
- W3004789324 cites W2073912178 @default.
- W3004789324 cites W2089247440 @default.
- W3004789324 cites W2100011707 @default.
- W3004789324 cites W2117829824 @default.
- W3004789324 cites W2171468534 @default.
- W3004789324 cites W2297152540 @default.
- W3004789324 cites W2607162077 @default.
- W3004789324 cites W2897113013 @default.
- W3004789324 cites W2919115771 @default.
- W3004789324 cites W2963131120 @default.
- W3004789324 cites W3122598275 @default.
- W3004789324 cites W4239414618 @default.
- W3004789324 doi "https://doi.org/10.1016/j.eswa.2020.113271" @default.
- W3004789324 hasPublicationYear "2020" @default.
- W3004789324 type Work @default.
- W3004789324 sameAs 3004789324 @default.
- W3004789324 citedByCount "5" @default.
- W3004789324 countsByYear W30047893242021 @default.
- W3004789324 countsByYear W30047893242022 @default.
- W3004789324 countsByYear W30047893242023 @default.
- W3004789324 crossrefType "journal-article" @default.
- W3004789324 hasAuthorship W3004789324A5017240551 @default.
- W3004789324 hasAuthorship W3004789324A5089672928 @default.
- W3004789324 hasConcept C119857082 @default.
- W3004789324 hasConcept C124101348 @default.
- W3004789324 hasConcept C149782125 @default.
- W3004789324 hasConcept C151406439 @default.
- W3004789324 hasConcept C151730666 @default.
- W3004789324 hasConcept C154945302 @default.
- W3004789324 hasConcept C2780299701 @default.
- W3004789324 hasConcept C2780762169 @default.
- W3004789324 hasConcept C33923547 @default.
- W3004789324 hasConcept C41008148 @default.
- W3004789324 hasConcept C8642999 @default.
- W3004789324 hasConcept C86803240 @default.
- W3004789324 hasConcept C88389905 @default.
- W3004789324 hasConcept C91602232 @default.
- W3004789324 hasConceptScore W3004789324C119857082 @default.
- W3004789324 hasConceptScore W3004789324C124101348 @default.
- W3004789324 hasConceptScore W3004789324C149782125 @default.
- W3004789324 hasConceptScore W3004789324C151406439 @default.
- W3004789324 hasConceptScore W3004789324C151730666 @default.
- W3004789324 hasConceptScore W3004789324C154945302 @default.
- W3004789324 hasConceptScore W3004789324C2780299701 @default.
- W3004789324 hasConceptScore W3004789324C2780762169 @default.
- W3004789324 hasConceptScore W3004789324C33923547 @default.
- W3004789324 hasConceptScore W3004789324C41008148 @default.
- W3004789324 hasConceptScore W3004789324C8642999 @default.
- W3004789324 hasConceptScore W3004789324C86803240 @default.
- W3004789324 hasConceptScore W3004789324C88389905 @default.
- W3004789324 hasConceptScore W3004789324C91602232 @default.
- W3004789324 hasLocation W30047893241 @default.
- W3004789324 hasOpenAccess W3004789324 @default.
- W3004789324 hasPrimaryLocation W30047893241 @default.
- W3004789324 hasRelatedWork W3014815208 @default.
- W3004789324 hasRelatedWork W3199608561 @default.
- W3004789324 hasRelatedWork W4210794429 @default.
- W3004789324 hasRelatedWork W4223456145 @default.
- W3004789324 hasRelatedWork W4283697347 @default.
- W3004789324 hasRelatedWork W4295309597 @default.
- W3004789324 hasRelatedWork W4295681619 @default.
- W3004789324 hasRelatedWork W4298144215 @default.
- W3004789324 hasRelatedWork W4309113015 @default.
- W3004789324 hasRelatedWork W4375930479 @default.
- W3004789324 hasVolume "150" @default.
- W3004789324 isParatext "false" @default.
- W3004789324 isRetracted "false" @default.
- W3004789324 magId "3004789324" @default.
- W3004789324 workType "article" @default.