Matches in SemOpenAlex for { <https://semopenalex.org/work/W3004865450> ?p ?o ?g. }
- W3004865450 endingPage "104420" @default.
- W3004865450 startingPage "104420" @default.
- W3004865450 abstract "A multilevel Monte Carlo (MLMC) method for quantifying model-form uncertainties associated with the Reynolds-Averaged Navier-Stokes (RANS) simulations is presented. Two, high-dimensional, stochastic extensions of the RANS equations are considered to demonstrate the applicability of the MLMC method. The first approach is based on global perturbation of the baseline eddy viscosity field using a lognormal random field. A more general second extension is considered based on the work of [Xiao et al. (2017)], where the entire Reynolds Stress Tensor (RST) is perturbed while maintaining realizability. For two fundamental flows, we show that the MLMC method based on a hierarchy of meshes is asymptotically faster than plain Monte Carlo. Additionally, we demonstrate that for some flows an optimal multilevel estimator can be obtained for which the cost scales with the same order as a single CFD solve on the finest grid level." @default.
- W3004865450 created "2020-02-14" @default.
- W3004865450 creator A5037157180 @default.
- W3004865450 creator A5041877923 @default.
- W3004865450 creator A5047664534 @default.
- W3004865450 date "2020-04-01" @default.
- W3004865450 modified "2023-09-26" @default.
- W3004865450 title "Stochastic turbulence modeling in RANS simulations via multilevel Monte Carlo" @default.
- W3004865450 cites W1523794300 @default.
- W3004865450 cites W1528439235 @default.
- W3004865450 cites W1595193945 @default.
- W3004865450 cites W1828419635 @default.
- W3004865450 cites W1955462486 @default.
- W3004865450 cites W1963049518 @default.
- W3004865450 cites W1966994088 @default.
- W3004865450 cites W1968024513 @default.
- W3004865450 cites W1983406208 @default.
- W3004865450 cites W1983492963 @default.
- W3004865450 cites W1988859494 @default.
- W3004865450 cites W1991681863 @default.
- W3004865450 cites W1997969642 @default.
- W3004865450 cites W2003191951 @default.
- W3004865450 cites W2007139313 @default.
- W3004865450 cites W2009405650 @default.
- W3004865450 cites W2014945091 @default.
- W3004865450 cites W2018159038 @default.
- W3004865450 cites W2034070975 @default.
- W3004865450 cites W2034434606 @default.
- W3004865450 cites W2044897930 @default.
- W3004865450 cites W2066334029 @default.
- W3004865450 cites W2067804657 @default.
- W3004865450 cites W2069366742 @default.
- W3004865450 cites W2072921737 @default.
- W3004865450 cites W2079559649 @default.
- W3004865450 cites W2083845086 @default.
- W3004865450 cites W2088771341 @default.
- W3004865450 cites W2100853628 @default.
- W3004865450 cites W2103258314 @default.
- W3004865450 cites W2129159395 @default.
- W3004865450 cites W2135459060 @default.
- W3004865450 cites W2143591652 @default.
- W3004865450 cites W2163715525 @default.
- W3004865450 cites W224589444 @default.
- W3004865450 cites W2283351822 @default.
- W3004865450 cites W2316668071 @default.
- W3004865450 cites W2490045648 @default.
- W3004865450 cites W2560947363 @default.
- W3004865450 cites W2746896737 @default.
- W3004865450 cites W3103019089 @default.
- W3004865450 doi "https://doi.org/10.1016/j.compfluid.2019.104420" @default.
- W3004865450 hasPublicationYear "2020" @default.
- W3004865450 type Work @default.
- W3004865450 sameAs 3004865450 @default.
- W3004865450 citedByCount "6" @default.
- W3004865450 countsByYear W30048654502020 @default.
- W3004865450 countsByYear W30048654502021 @default.
- W3004865450 countsByYear W30048654502022 @default.
- W3004865450 countsByYear W30048654502023 @default.
- W3004865450 crossrefType "journal-article" @default.
- W3004865450 hasAuthorship W3004865450A5037157180 @default.
- W3004865450 hasAuthorship W3004865450A5041877923 @default.
- W3004865450 hasAuthorship W3004865450A5047664534 @default.
- W3004865450 hasBestOaLocation W30048654502 @default.
- W3004865450 hasConcept C105795698 @default.
- W3004865450 hasConcept C121332964 @default.
- W3004865450 hasConcept C121448008 @default.
- W3004865450 hasConcept C121864883 @default.
- W3004865450 hasConcept C147196274 @default.
- W3004865450 hasConcept C19499675 @default.
- W3004865450 hasConcept C196558001 @default.
- W3004865450 hasConcept C204573209 @default.
- W3004865450 hasConcept C28826006 @default.
- W3004865450 hasConcept C32526432 @default.
- W3004865450 hasConcept C33923547 @default.
- W3004865450 hasConcept C57879066 @default.
- W3004865450 hasConceptScore W3004865450C105795698 @default.
- W3004865450 hasConceptScore W3004865450C121332964 @default.
- W3004865450 hasConceptScore W3004865450C121448008 @default.
- W3004865450 hasConceptScore W3004865450C121864883 @default.
- W3004865450 hasConceptScore W3004865450C147196274 @default.
- W3004865450 hasConceptScore W3004865450C19499675 @default.
- W3004865450 hasConceptScore W3004865450C196558001 @default.
- W3004865450 hasConceptScore W3004865450C204573209 @default.
- W3004865450 hasConceptScore W3004865450C28826006 @default.
- W3004865450 hasConceptScore W3004865450C32526432 @default.
- W3004865450 hasConceptScore W3004865450C33923547 @default.
- W3004865450 hasConceptScore W3004865450C57879066 @default.
- W3004865450 hasLocation W30048654501 @default.
- W3004865450 hasLocation W30048654502 @default.
- W3004865450 hasLocation W30048654503 @default.
- W3004865450 hasLocation W30048654504 @default.
- W3004865450 hasOpenAccess W3004865450 @default.
- W3004865450 hasPrimaryLocation W30048654501 @default.
- W3004865450 hasRelatedWork W2083033204 @default.
- W3004865450 hasRelatedWork W2119761404 @default.
- W3004865450 hasRelatedWork W223360790 @default.
- W3004865450 hasRelatedWork W2336667188 @default.
- W3004865450 hasRelatedWork W2376267638 @default.