Matches in SemOpenAlex for { <https://semopenalex.org/work/W3004869124> ?p ?o ?g. }
- W3004869124 endingPage "124620" @default.
- W3004869124 startingPage "124620" @default.
- W3004869124 abstract "Cluster analysis methods are one of the most widely-used types of methods in regionalization of watersheds for regional flood frequency analysis. Several cluster analysis algorithms have been used in regional frequency analysis studies in the last decades, which most of them have been data-driven algorithms that identify clusters based on distances or dissimilarities between data points. Finite mixture models are a type of statistical models that are able to identify the clusters based on frequency distributions. In this study, the performance of finite mixture models for regionalization of watersheds was evaluated by applying Gaussian mixture models for regionalization of watersheds of Karun-e-bozorg in the southwest of Iran. Gaussian mixture models are the best-known type of finite mixture models. The performance of this method was evaluated according to the homogeneity of regions and the accuracy of flood quantile estimates. In addition, the results of the proposed method were compared with the results provided by using a well-known and efficient data-driven hybrid clustering algorithms. According to the results, the Gaussian mixture models clearly outperformed the hybrid clustering algorithm in identifying homogeneous regions. While one of the Gaussian mixture models assigned all the watersheds to homogeneous regions for five different choices of the number of regions, the hybrid clustering algorithm assigned all the watersheds homogeneous regions only for one choice of the number of regions. Also, the flood estimates provided based on the regions identified by the Gaussian mixture model and the hybrid clustering algorithm were compared with the at-site estimates. As evidenced by the results, the flood estimates related to the regions identified by the Gaussian mixture model are less deviated from at-site estimates in terms of the error measures. In general, results show that finite mixture models can be considered as an efficient option to perform regionalization of watersheds in regional flood frequency analysis studies." @default.
- W3004869124 created "2020-02-14" @default.
- W3004869124 creator A5043626442 @default.
- W3004869124 creator A5061231302 @default.
- W3004869124 creator A5088084971 @default.
- W3004869124 date "2020-04-01" @default.
- W3004869124 modified "2023-10-17" @default.
- W3004869124 title "Regionalization of watersheds by finite mixture models" @default.
- W3004869124 cites W1594720646 @default.
- W3004869124 cites W1964013292 @default.
- W3004869124 cites W1971492092 @default.
- W3004869124 cites W1986259049 @default.
- W3004869124 cites W1987720758 @default.
- W3004869124 cites W1990367006 @default.
- W3004869124 cites W1992650905 @default.
- W3004869124 cites W1996395472 @default.
- W3004869124 cites W2002938937 @default.
- W3004869124 cites W2012220067 @default.
- W3004869124 cites W2016381774 @default.
- W3004869124 cites W2020611078 @default.
- W3004869124 cites W2028451903 @default.
- W3004869124 cites W2033024028 @default.
- W3004869124 cites W2038911681 @default.
- W3004869124 cites W2039723596 @default.
- W3004869124 cites W2047109555 @default.
- W3004869124 cites W2049633694 @default.
- W3004869124 cites W2069142828 @default.
- W3004869124 cites W2075578935 @default.
- W3004869124 cites W2079140961 @default.
- W3004869124 cites W2082976688 @default.
- W3004869124 cites W2082983485 @default.
- W3004869124 cites W2086776003 @default.
- W3004869124 cites W2111183161 @default.
- W3004869124 cites W2126793455 @default.
- W3004869124 cites W2127591589 @default.
- W3004869124 cites W2132399599 @default.
- W3004869124 cites W2142897671 @default.
- W3004869124 cites W2152936651 @default.
- W3004869124 cites W2157103472 @default.
- W3004869124 cites W2158218957 @default.
- W3004869124 cites W2164540610 @default.
- W3004869124 cites W2167830000 @default.
- W3004869124 cites W2479531384 @default.
- W3004869124 cites W2495581274 @default.
- W3004869124 cites W2562606677 @default.
- W3004869124 cites W2801979219 @default.
- W3004869124 cites W65738273 @default.
- W3004869124 doi "https://doi.org/10.1016/j.jhydrol.2020.124620" @default.
- W3004869124 hasPublicationYear "2020" @default.
- W3004869124 type Work @default.
- W3004869124 sameAs 3004869124 @default.
- W3004869124 citedByCount "10" @default.
- W3004869124 countsByYear W30048691242021 @default.
- W3004869124 countsByYear W30048691242022 @default.
- W3004869124 countsByYear W30048691242023 @default.
- W3004869124 crossrefType "journal-article" @default.
- W3004869124 hasAuthorship W3004869124A5043626442 @default.
- W3004869124 hasAuthorship W3004869124A5061231302 @default.
- W3004869124 hasAuthorship W3004869124A5088084971 @default.
- W3004869124 hasConcept C105795698 @default.
- W3004869124 hasConcept C11413529 @default.
- W3004869124 hasConcept C114614502 @default.
- W3004869124 hasConcept C118671147 @default.
- W3004869124 hasConcept C121332964 @default.
- W3004869124 hasConcept C124101348 @default.
- W3004869124 hasConcept C142259097 @default.
- W3004869124 hasConcept C163716315 @default.
- W3004869124 hasConcept C166550679 @default.
- W3004869124 hasConcept C33923547 @default.
- W3004869124 hasConcept C41008148 @default.
- W3004869124 hasConcept C61224824 @default.
- W3004869124 hasConcept C62520636 @default.
- W3004869124 hasConcept C66882249 @default.
- W3004869124 hasConcept C73555534 @default.
- W3004869124 hasConceptScore W3004869124C105795698 @default.
- W3004869124 hasConceptScore W3004869124C11413529 @default.
- W3004869124 hasConceptScore W3004869124C114614502 @default.
- W3004869124 hasConceptScore W3004869124C118671147 @default.
- W3004869124 hasConceptScore W3004869124C121332964 @default.
- W3004869124 hasConceptScore W3004869124C124101348 @default.
- W3004869124 hasConceptScore W3004869124C142259097 @default.
- W3004869124 hasConceptScore W3004869124C163716315 @default.
- W3004869124 hasConceptScore W3004869124C166550679 @default.
- W3004869124 hasConceptScore W3004869124C33923547 @default.
- W3004869124 hasConceptScore W3004869124C41008148 @default.
- W3004869124 hasConceptScore W3004869124C61224824 @default.
- W3004869124 hasConceptScore W3004869124C62520636 @default.
- W3004869124 hasConceptScore W3004869124C66882249 @default.
- W3004869124 hasConceptScore W3004869124C73555534 @default.
- W3004869124 hasLocation W30048691241 @default.
- W3004869124 hasOpenAccess W3004869124 @default.
- W3004869124 hasPrimaryLocation W30048691241 @default.
- W3004869124 hasRelatedWork W1578916557 @default.
- W3004869124 hasRelatedWork W2016260880 @default.
- W3004869124 hasRelatedWork W2073372811 @default.
- W3004869124 hasRelatedWork W2122170741 @default.
- W3004869124 hasRelatedWork W2350507978 @default.
- W3004869124 hasRelatedWork W2365475731 @default.