Matches in SemOpenAlex for { <https://semopenalex.org/work/W3004906356> ?p ?o ?g. }
- W3004906356 abstract "Summary Principled computational approaches for tumor phylogeny reconstruction via single-cell sequencing typically aim to build the most likely perfect phylogeny tree from the noisy genotype matrix - which represents genotype calls of single-cells. This problem is NP-hard, and as a result, existing approaches aim to solve relatively small instances of it through combinatorial optimization techniques or Bayesian inference. As expected, even when the goal is to infer basic topological features of the tumor phylogeny - rather than reconstructing the topology entirely, these approaches could be prohibitively slow. In this paper, we introduce fast deep-learning solutions to the problems of inferring whether the most likely tree has a linear (chain) or branching topology and whether a perfect phylogeny is feasible from a given genotype matrix. We also present a reinforcement learning approach for reconstructing the most likely tumor phylogeny. This preliminary work demonstrates that data-driven approaches can reconstruct key features of tumor evolution." @default.
- W3004906356 created "2020-02-14" @default.
- W3004906356 creator A5000077084 @default.
- W3004906356 creator A5013618541 @default.
- W3004906356 creator A5042282214 @default.
- W3004906356 creator A5045683675 @default.
- W3004906356 creator A5077099358 @default.
- W3004906356 date "2020-02-08" @default.
- W3004906356 modified "2023-10-16" @default.
- W3004906356 title "Tumor Phylogeny Topology Inference via Deep Learning" @default.
- W3004906356 cites W1986888627 @default.
- W3004906356 cites W2002295829 @default.
- W3004906356 cites W2004232113 @default.
- W3004906356 cites W2064675550 @default.
- W3004906356 cites W2074507113 @default.
- W3004906356 cites W2101926813 @default.
- W3004906356 cites W2111874706 @default.
- W3004906356 cites W2114095872 @default.
- W3004906356 cites W2119717200 @default.
- W3004906356 cites W2122392334 @default.
- W3004906356 cites W2127187002 @default.
- W3004906356 cites W2129288227 @default.
- W3004906356 cites W2134599124 @default.
- W3004906356 cites W2340974016 @default.
- W3004906356 cites W2346273585 @default.
- W3004906356 cites W2482614962 @default.
- W3004906356 cites W2570688054 @default.
- W3004906356 cites W2618389271 @default.
- W3004906356 cites W2734435792 @default.
- W3004906356 cites W2754025713 @default.
- W3004906356 cites W2762185802 @default.
- W3004906356 cites W2766447205 @default.
- W3004906356 cites W2793271470 @default.
- W3004906356 cites W2887247095 @default.
- W3004906356 cites W2890035501 @default.
- W3004906356 cites W2919831875 @default.
- W3004906356 cites W2949708679 @default.
- W3004906356 cites W2965510019 @default.
- W3004906356 cites W2970840218 @default.
- W3004906356 cites W2977114167 @default.
- W3004906356 cites W2977250149 @default.
- W3004906356 cites W2980515223 @default.
- W3004906356 cites W2980586637 @default.
- W3004906356 cites W3004647847 @default.
- W3004906356 cites W3042314396 @default.
- W3004906356 cites W3042807857 @default.
- W3004906356 cites W3183032853 @default.
- W3004906356 cites W938539187 @default.
- W3004906356 doi "https://doi.org/10.1101/2020.02.07.938852" @default.
- W3004906356 hasPublicationYear "2020" @default.
- W3004906356 type Work @default.
- W3004906356 sameAs 3004906356 @default.
- W3004906356 citedByCount "1" @default.
- W3004906356 countsByYear W30049063562020 @default.
- W3004906356 crossrefType "posted-content" @default.
- W3004906356 hasAuthorship W3004906356A5000077084 @default.
- W3004906356 hasAuthorship W3004906356A5013618541 @default.
- W3004906356 hasAuthorship W3004906356A5042282214 @default.
- W3004906356 hasAuthorship W3004906356A5045683675 @default.
- W3004906356 hasAuthorship W3004906356A5077099358 @default.
- W3004906356 hasBestOaLocation W30049063561 @default.
- W3004906356 hasConcept C104317684 @default.
- W3004906356 hasConcept C108583219 @default.
- W3004906356 hasConcept C113174947 @default.
- W3004906356 hasConcept C114614502 @default.
- W3004906356 hasConcept C119857082 @default.
- W3004906356 hasConcept C154945302 @default.
- W3004906356 hasConcept C184720557 @default.
- W3004906356 hasConcept C2776214188 @default.
- W3004906356 hasConcept C33923547 @default.
- W3004906356 hasConcept C41008148 @default.
- W3004906356 hasConcept C54355233 @default.
- W3004906356 hasConcept C80444323 @default.
- W3004906356 hasConcept C86803240 @default.
- W3004906356 hasConcept C90132467 @default.
- W3004906356 hasConceptScore W3004906356C104317684 @default.
- W3004906356 hasConceptScore W3004906356C108583219 @default.
- W3004906356 hasConceptScore W3004906356C113174947 @default.
- W3004906356 hasConceptScore W3004906356C114614502 @default.
- W3004906356 hasConceptScore W3004906356C119857082 @default.
- W3004906356 hasConceptScore W3004906356C154945302 @default.
- W3004906356 hasConceptScore W3004906356C184720557 @default.
- W3004906356 hasConceptScore W3004906356C2776214188 @default.
- W3004906356 hasConceptScore W3004906356C33923547 @default.
- W3004906356 hasConceptScore W3004906356C41008148 @default.
- W3004906356 hasConceptScore W3004906356C54355233 @default.
- W3004906356 hasConceptScore W3004906356C80444323 @default.
- W3004906356 hasConceptScore W3004906356C86803240 @default.
- W3004906356 hasConceptScore W3004906356C90132467 @default.
- W3004906356 hasLocation W30049063561 @default.
- W3004906356 hasLocation W30049063562 @default.
- W3004906356 hasOpenAccess W3004906356 @default.
- W3004906356 hasPrimaryLocation W30049063561 @default.
- W3004906356 hasRelatedWork W2795261237 @default.
- W3004906356 hasRelatedWork W3014300295 @default.
- W3004906356 hasRelatedWork W3164822677 @default.
- W3004906356 hasRelatedWork W4223943233 @default.
- W3004906356 hasRelatedWork W4225161397 @default.
- W3004906356 hasRelatedWork W4312200629 @default.
- W3004906356 hasRelatedWork W4360585206 @default.