Matches in SemOpenAlex for { <https://semopenalex.org/work/W3004960918> ?p ?o ?g. }
- W3004960918 endingPage "9389" @default.
- W3004960918 startingPage "9376" @default.
- W3004960918 abstract "In recent years, intelligent transportation systems are a vital part of the development of smart cities. In intelligent transportation systems, it is necessary for each vehicle to know the states of all other running vehicles within a range, depends on the road speed limit. The states include location, travelling direction, speed, and possibly other useful information. Knowing the states of surrounding vehicles is critical in high-risk locations, such as traffic intersections and roundabouts. The development of 5G and its technologies, such as massive multiple-input multiple-output antenna, enables a new communication model, termed vehicle-to-infrastructure edge network (V2IEN), to achieve the above communication goal. In this paper, we study the optimization of the data throughput of the proposed V2IENs in 5G with the Time Division Duplex scheme. We show that due to the nature of information flow in the proposed V2IENs, the uplink and downlink traffic loads are asymmetric. This asymmetric characteristic allows maximizing the degrees of freedom of the V2IENs by optimizing the time-slot resources for uplink and downlink transmission. In this work, we present the sum-DoF capacity of the V2IENs with proof. We demonstrate that a significant DoF gain is achieved for the V2IENs by carefully allocate the system transmission time resources. We further propose an iterative algorithm for network sum-rate maximization via the optimization of the vehicle and base station precoders. Numerical results demonstrate that a careful design of the precoders at the base station and at the vehicles can considerably improve the V2IENs performance." @default.
- W3004960918 created "2020-02-14" @default.
- W3004960918 creator A5044936528 @default.
- W3004960918 creator A5063946480 @default.
- W3004960918 creator A5082630089 @default.
- W3004960918 creator A5091837980 @default.
- W3004960918 date "2020-09-01" @default.
- W3004960918 modified "2023-10-16" @default.
- W3004960918 title "Optimization of Data Exchange in 5G Vehicle-to-Infrastructure Edge Networks" @default.
- W3004960918 cites W1966155482 @default.
- W3004960918 cites W1972975888 @default.
- W3004960918 cites W1992590104 @default.
- W3004960918 cites W1997489564 @default.
- W3004960918 cites W1998482279 @default.
- W3004960918 cites W2017096524 @default.
- W3004960918 cites W2021891144 @default.
- W3004960918 cites W2035378079 @default.
- W3004960918 cites W2063534993 @default.
- W3004960918 cites W2099111195 @default.
- W3004960918 cites W2132107720 @default.
- W3004960918 cites W2144925985 @default.
- W3004960918 cites W2149166346 @default.
- W3004960918 cites W2153739324 @default.
- W3004960918 cites W2158491402 @default.
- W3004960918 cites W2261690584 @default.
- W3004960918 cites W2346068425 @default.
- W3004960918 cites W2469547856 @default.
- W3004960918 cites W2507790150 @default.
- W3004960918 cites W2576845151 @default.
- W3004960918 cites W2615358882 @default.
- W3004960918 cites W2769456309 @default.
- W3004960918 cites W2769491749 @default.
- W3004960918 cites W2802508687 @default.
- W3004960918 cites W2808127700 @default.
- W3004960918 cites W2898758372 @default.
- W3004960918 cites W2906647810 @default.
- W3004960918 cites W2917929847 @default.
- W3004960918 cites W2937286339 @default.
- W3004960918 cites W2946702598 @default.
- W3004960918 cites W2963997559 @default.
- W3004960918 cites W2964352301 @default.
- W3004960918 cites W2964589226 @default.
- W3004960918 cites W2969820022 @default.
- W3004960918 cites W2982382772 @default.
- W3004960918 cites W3012249405 @default.
- W3004960918 cites W4250589301 @default.
- W3004960918 doi "https://doi.org/10.1109/tvt.2020.2971080" @default.
- W3004960918 hasPublicationYear "2020" @default.
- W3004960918 type Work @default.
- W3004960918 sameAs 3004960918 @default.
- W3004960918 citedByCount "6" @default.
- W3004960918 countsByYear W30049609182020 @default.
- W3004960918 countsByYear W30049609182021 @default.
- W3004960918 countsByYear W30049609182022 @default.
- W3004960918 countsByYear W30049609182023 @default.
- W3004960918 crossrefType "journal-article" @default.
- W3004960918 hasAuthorship W3004960918A5044936528 @default.
- W3004960918 hasAuthorship W3004960918A5063946480 @default.
- W3004960918 hasAuthorship W3004960918A5082630089 @default.
- W3004960918 hasAuthorship W3004960918A5091837980 @default.
- W3004960918 hasConcept C11413529 @default.
- W3004960918 hasConcept C126255220 @default.
- W3004960918 hasConcept C127413603 @default.
- W3004960918 hasConcept C137836250 @default.
- W3004960918 hasConcept C138660444 @default.
- W3004960918 hasConcept C153646914 @default.
- W3004960918 hasConcept C162307627 @default.
- W3004960918 hasConcept C22212356 @default.
- W3004960918 hasConcept C2776330181 @default.
- W3004960918 hasConcept C31258907 @default.
- W3004960918 hasConcept C33923547 @default.
- W3004960918 hasConcept C41008148 @default.
- W3004960918 hasConcept C47796450 @default.
- W3004960918 hasConcept C54355233 @default.
- W3004960918 hasConcept C552990157 @default.
- W3004960918 hasConcept C68649174 @default.
- W3004960918 hasConcept C761482 @default.
- W3004960918 hasConcept C76155785 @default.
- W3004960918 hasConcept C79403827 @default.
- W3004960918 hasConcept C86803240 @default.
- W3004960918 hasConcept C99611785 @default.
- W3004960918 hasConceptScore W3004960918C11413529 @default.
- W3004960918 hasConceptScore W3004960918C126255220 @default.
- W3004960918 hasConceptScore W3004960918C127413603 @default.
- W3004960918 hasConceptScore W3004960918C137836250 @default.
- W3004960918 hasConceptScore W3004960918C138660444 @default.
- W3004960918 hasConceptScore W3004960918C153646914 @default.
- W3004960918 hasConceptScore W3004960918C162307627 @default.
- W3004960918 hasConceptScore W3004960918C22212356 @default.
- W3004960918 hasConceptScore W3004960918C2776330181 @default.
- W3004960918 hasConceptScore W3004960918C31258907 @default.
- W3004960918 hasConceptScore W3004960918C33923547 @default.
- W3004960918 hasConceptScore W3004960918C41008148 @default.
- W3004960918 hasConceptScore W3004960918C47796450 @default.
- W3004960918 hasConceptScore W3004960918C54355233 @default.
- W3004960918 hasConceptScore W3004960918C552990157 @default.
- W3004960918 hasConceptScore W3004960918C68649174 @default.
- W3004960918 hasConceptScore W3004960918C761482 @default.