Matches in SemOpenAlex for { <https://semopenalex.org/work/W3005069949> ?p ?o ?g. }
Showing items 1 to 62 of
62
with 100 items per page.
- W3005069949 abstract "In the United States of America, more than 100 million adults currently live with diabetes mellitus as well as prediabetes, a condition that occurs as a result of elevated blood sugar levels. Diabetes mellitus can be identified in a series of laboratory tests where blood must be drawn to analyze a multitude of parameters such as Glucose, Hemoglobin A1C (HGBA1C), Alanine transaminase (ALT), Cholesterol (CHOL), High-density lipoprotein (HDL), Low density lipoprotein calculated (LDL_CALC), and Triglyceride (TRIG). This disease must be identified in its early stages because diabetes mellitus can lead to heart and blood vessel problems which may be fatal to the patient. This research looks at a dataset spanning ten years of a patient comprehensively to see the patterns established and how they can be useful in advising lifestyle and routine changes to prevent diabetes mellitus of a patient. In order to predict the Diabetes Mellitus parameters, statistical computation and graphical visualization was implemented using the “R” programming language. In R, different approaches were taken to explore the data in two different ways, the parameters versus the data. The parameters were looked at with the principal component analysis (PCA) approach to understand the effects of critical parameters to the patient. The data was analyzed with regards to the integrity of the patient's health as well as potential symptoms they may experience. The clustering technique was used to group the data in a way that visually represented the interactions amongst the points. Clustering serves as an easy way to organize data and detach it from details that may not be as important as the points themselves. PCA and clustering are purely descriptive statistics that can tell a physician about the patient's current health condition, but does not give them information about future symptoms. In order to create predictive models to foresee how the parameters will fluctuate over the next ten years, Vector Auto Regressive models (VARS) can be utilized. These additive models can inform a physician about how the patient's parameters are progressing within a time frame. The prediction results are within three standard deviation values which will provide the low and high range values when generating the models." @default.
- W3005069949 created "2020-02-14" @default.
- W3005069949 creator A5018473792 @default.
- W3005069949 date "2019-11-01" @default.
- W3005069949 modified "2023-09-25" @default.
- W3005069949 title "Prediction of Diabetes Progression Using Statistical Modeling" @default.
- W3005069949 doi "https://doi.org/10.1109/bibm47256.2019.8983184" @default.
- W3005069949 hasPublicationYear "2019" @default.
- W3005069949 type Work @default.
- W3005069949 sameAs 3005069949 @default.
- W3005069949 citedByCount "0" @default.
- W3005069949 crossrefType "proceedings-article" @default.
- W3005069949 hasAuthorship W3005069949A5018473792 @default.
- W3005069949 hasConcept C124101348 @default.
- W3005069949 hasConcept C134018914 @default.
- W3005069949 hasConcept C154945302 @default.
- W3005069949 hasConcept C172367668 @default.
- W3005069949 hasConcept C2777180221 @default.
- W3005069949 hasConcept C2779668308 @default.
- W3005069949 hasConcept C36464697 @default.
- W3005069949 hasConcept C41008148 @default.
- W3005069949 hasConcept C555293320 @default.
- W3005069949 hasConcept C71924100 @default.
- W3005069949 hasConcept C73555534 @default.
- W3005069949 hasConceptScore W3005069949C124101348 @default.
- W3005069949 hasConceptScore W3005069949C134018914 @default.
- W3005069949 hasConceptScore W3005069949C154945302 @default.
- W3005069949 hasConceptScore W3005069949C172367668 @default.
- W3005069949 hasConceptScore W3005069949C2777180221 @default.
- W3005069949 hasConceptScore W3005069949C2779668308 @default.
- W3005069949 hasConceptScore W3005069949C36464697 @default.
- W3005069949 hasConceptScore W3005069949C41008148 @default.
- W3005069949 hasConceptScore W3005069949C555293320 @default.
- W3005069949 hasConceptScore W3005069949C71924100 @default.
- W3005069949 hasConceptScore W3005069949C73555534 @default.
- W3005069949 hasLocation W30050699491 @default.
- W3005069949 hasOpenAccess W3005069949 @default.
- W3005069949 hasPrimaryLocation W30050699491 @default.
- W3005069949 hasRelatedWork W2334770438 @default.
- W3005069949 hasRelatedWork W2478540874 @default.
- W3005069949 hasRelatedWork W2484115627 @default.
- W3005069949 hasRelatedWork W2554998089 @default.
- W3005069949 hasRelatedWork W2775450699 @default.
- W3005069949 hasRelatedWork W2902814236 @default.
- W3005069949 hasRelatedWork W2975464452 @default.
- W3005069949 hasRelatedWork W2997072993 @default.
- W3005069949 hasRelatedWork W2997139566 @default.
- W3005069949 hasRelatedWork W3007392641 @default.
- W3005069949 hasRelatedWork W3034154939 @default.
- W3005069949 hasRelatedWork W3084116491 @default.
- W3005069949 hasRelatedWork W3126599133 @default.
- W3005069949 hasRelatedWork W3169463331 @default.
- W3005069949 hasRelatedWork W3171912624 @default.
- W3005069949 hasRelatedWork W3190390315 @default.
- W3005069949 hasRelatedWork W7669957 @default.
- W3005069949 hasRelatedWork W2559154650 @default.
- W3005069949 hasRelatedWork W2735226740 @default.
- W3005069949 hasRelatedWork W2846771894 @default.
- W3005069949 isParatext "false" @default.
- W3005069949 isRetracted "false" @default.
- W3005069949 magId "3005069949" @default.
- W3005069949 workType "article" @default.