Matches in SemOpenAlex for { <https://semopenalex.org/work/W3005108195> ?p ?o ?g. }
- W3005108195 endingPage "1563" @default.
- W3005108195 startingPage "1548" @default.
- W3005108195 abstract "A suite of hydrous pyrolysis experiments was conducted on low-maturity organic-rich shale samples (with a total organic carbon (TOC) content of 6.9 wt % and marine-derived type I kerogen) from Xiamaling Formation to investigate the pore network evolution across a maturation gradient. Scanning electron microscopy and low-pressure gas physisorption (CO2 and Ar) were applied to observe the pore morphology and quantify the pore structure. On the basis of the geochemical properties and yields of the pyrolysis products, organic matter (OM) thermal maturation includes the following four stages: bitumen generation (unheated to 350 °C), oil window (350–410 °C), oil cracking (410–480 °C), and wet gas cracking (480–550 °C). The nanoscale pore network evolution shows a good correspondence to stages of hydrocarbon generation. Overall, the total pore volume increased in the bitumen generation stage and the oil window, followed by a decrease in the oil cracking stage, but then again increased in the wet gas cracking stage, while the total surface area progressively increased after an obvious decrease in the bitumen generation stage. The dominant pores at the bitumen generation stage are associated with minerals. The presence of shrinkage OM pores and microfractures contributes to increased volumes of meso- (diameter range of 2–50 nm) and macropores (diameter > 50 nm), while the decrease in micropore (diameter < 2 nm) volume is mainly related to bitumen infilling. During the oil window, bubble-like OM pores are greatly developed, which contributes to an increase in the total pore volume. A lower amount of modified mineral pores with relic OM is observed. However, the high expulsion efficiency causes a limited decline in the pore volume due to bitumen infilling. During the oil cracking stage, modified mineral pores progressively increase. Transformation of large-size bubble-like OM pores to small-size spongy OM pores leads to an increased micropore volume, as well as decreased meso- and macropore volumes. During the wet gas cracking stage, a large abundance of spongy OM pores is developed in highly transformed OM, leading to progressive increases in pore volume. Overall, mineral-related pores decrease, while OM pores change from nondevelopment, shrinkage pores, bubble-like to spongy pores during thermal maturation. Furthermore, OM thermal maturation primarily impacts pores less than 20 nm in size, since pore structure parameters for those pores exhibit the most change after pyrolysis. The pore evolution model revealed in this study will provide an analog for that of the other marine shales." @default.
- W3005108195 created "2020-02-14" @default.
- W3005108195 creator A5022743478 @default.
- W3005108195 creator A5026129964 @default.
- W3005108195 creator A5031517506 @default.
- W3005108195 creator A5048906467 @default.
- W3005108195 creator A5082720296 @default.
- W3005108195 creator A5086604028 @default.
- W3005108195 date "2020-02-03" @default.
- W3005108195 modified "2023-09-25" @default.
- W3005108195 title "Nanoscale Pore Network Evolution of Xiamaling Marine Shale during Organic Matter Maturation by Hydrous Pyrolysis" @default.
- W3005108195 cites W1937515036 @default.
- W3005108195 cites W1980073009 @default.
- W3005108195 cites W1980704616 @default.
- W3005108195 cites W1986757624 @default.
- W3005108195 cites W1996117895 @default.
- W3005108195 cites W2011652100 @default.
- W3005108195 cites W2012926605 @default.
- W3005108195 cites W2044143679 @default.
- W3005108195 cites W2044749444 @default.
- W3005108195 cites W2051882304 @default.
- W3005108195 cites W2071771565 @default.
- W3005108195 cites W2078725207 @default.
- W3005108195 cites W2085279948 @default.
- W3005108195 cites W2087346669 @default.
- W3005108195 cites W2090582737 @default.
- W3005108195 cites W2110830197 @default.
- W3005108195 cites W2128873110 @default.
- W3005108195 cites W2134189468 @default.
- W3005108195 cites W2134744054 @default.
- W3005108195 cites W2156608310 @default.
- W3005108195 cites W2158897778 @default.
- W3005108195 cites W2168621338 @default.
- W3005108195 cites W2170995602 @default.
- W3005108195 cites W2197251011 @default.
- W3005108195 cites W2253842310 @default.
- W3005108195 cites W2395256810 @default.
- W3005108195 cites W2474746158 @default.
- W3005108195 cites W2504675210 @default.
- W3005108195 cites W2520504205 @default.
- W3005108195 cites W2535540992 @default.
- W3005108195 cites W2563421028 @default.
- W3005108195 cites W2565094354 @default.
- W3005108195 cites W2567544120 @default.
- W3005108195 cites W2575185355 @default.
- W3005108195 cites W2586229844 @default.
- W3005108195 cites W2586281180 @default.
- W3005108195 cites W2589976186 @default.
- W3005108195 cites W2606129178 @default.
- W3005108195 cites W2608791006 @default.
- W3005108195 cites W2614146402 @default.
- W3005108195 cites W2643832315 @default.
- W3005108195 cites W2688244601 @default.
- W3005108195 cites W2735852170 @default.
- W3005108195 cites W2740686188 @default.
- W3005108195 cites W2746156070 @default.
- W3005108195 cites W2764196903 @default.
- W3005108195 cites W2771802104 @default.
- W3005108195 cites W2783550500 @default.
- W3005108195 cites W2799363219 @default.
- W3005108195 cites W2807242606 @default.
- W3005108195 cites W2883779306 @default.
- W3005108195 cites W2886952646 @default.
- W3005108195 cites W2891925896 @default.
- W3005108195 cites W2894815164 @default.
- W3005108195 cites W2897674569 @default.
- W3005108195 cites W2899275929 @default.
- W3005108195 cites W2901241329 @default.
- W3005108195 cites W2906756700 @default.
- W3005108195 cites W2916325382 @default.
- W3005108195 cites W2941056473 @default.
- W3005108195 cites W4241889653 @default.
- W3005108195 cites W55589394 @default.
- W3005108195 cites W580147821 @default.
- W3005108195 cites W843007777 @default.
- W3005108195 doi "https://doi.org/10.1021/acs.energyfuels.9b03686" @default.
- W3005108195 hasPublicationYear "2020" @default.
- W3005108195 type Work @default.
- W3005108195 sameAs 3005108195 @default.
- W3005108195 citedByCount "33" @default.
- W3005108195 countsByYear W30051081952020 @default.
- W3005108195 countsByYear W30051081952021 @default.
- W3005108195 countsByYear W30051081952022 @default.
- W3005108195 countsByYear W30051081952023 @default.
- W3005108195 crossrefType "journal-article" @default.
- W3005108195 hasAuthorship W3005108195A5022743478 @default.
- W3005108195 hasAuthorship W3005108195A5026129964 @default.
- W3005108195 hasAuthorship W3005108195A5031517506 @default.
- W3005108195 hasAuthorship W3005108195A5048906467 @default.
- W3005108195 hasAuthorship W3005108195A5082720296 @default.
- W3005108195 hasAuthorship W3005108195A5086604028 @default.
- W3005108195 hasConcept C107872376 @default.
- W3005108195 hasConcept C109007969 @default.
- W3005108195 hasConcept C121332964 @default.
- W3005108195 hasConcept C126559015 @default.
- W3005108195 hasConcept C127313418 @default.
- W3005108195 hasConcept C127413603 @default.
- W3005108195 hasConcept C151730666 @default.